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Abstract

Dependable visual drone detection is crucial for the se-
cure integration of drones into the airspace. However,
drone detection accuracy is significantly affected by domain
shifts due to environmental changes, varied PoVs, and back-
ground shifts. To address these challenges, we present the
DrIFT dataset, specifically developed for visual drone de-
tection under domain shifts. DrIFT includes fourteen dis-
tinct domains, each characterized by shifts in PoV, synthetic
to real data, season, and adverse weather. Notably, DrIFT
uniquely emphasizes background shift by providing back-
ground segmentation maps to enable background-wise met-
rics and evaluation. Our new uncertainty estimation met-
ric, MCDO-map, features lower post-processing complex-
ity, surpassing traditional methods. We use the MCDO-
map in our uncertainty-aware unsupervised domain adap-
tation method, demonstrating superior performance com-
pared to state-of-the-art unsupervised domain adaptation
techniques. https://github.com/FardadDadboud/DrIFT.git.

1. Introduction
Uncrewed Aerial Vehicles (UAVs), also known as

drones, have gained popularity in recent years due to their
versatility and cost-effectiveness for various operations [18,
62], including healthcare [42], surveillance [10, 16], deliv-
ery [36], agriculture [3, 5], construction and mining [9, 54],
infrastructure inspection [2], and search-and-rescue mis-
sions [35]. However, their ubiquitous use has raised safety
concerns, such as the possibility of their use for malicious
activities and collisions with other objects in the airspace
[28, 58]. Achieving autonomous flight capabilities in chal-
lenging environments, both for individual drones and in
swarm scenarios, is vital for various applications [25]. En-
suring the safety of such operations depends on the accurate
and efficient processing of drone-related data.

In particular, vision-based drone detection plays a crucial
role, as it faces challenges such as detecting distant small
objects, handling complex backgrounds (BGs), and distin-
guishing drones from other visually similar flying objects.

Deep Neural Networks (DNNs) have demonstrated excep-
tional capabilities in multiple applications, including drone
detection [7, 11, 15, 26]. However, distribution shifts from
the training to the validation set, caused by environmental
variations, various points of view (PoVs), and background
changes, pose intrinsic challenges in drone detection and af-
fect the DNNs capabilities. Specifically, BG shift, e.g. train-
ing with data mostly captured with sky background while
sky, tree, and ground backgrounds appear in the validation
set, is also called unseen BG [63]. The collection of super-
vised data for all possible domains to ensure DNN general-
ization is not feasible and often incurs a substantial cost for
data collection and annotation [33, 37, 46], especially, it is
worsened in adverse weather conditions or under regulatory
constraints for drone-based applications.

Unsupervised Domain Adaptation (UDA) [6,8,21,37,39]
is a principal approach to addressing domain shift (DS) in
object detection (OD). Domain shift refers to shifts in the
input image due to environmental factors that affect the
performance of drone detection due to their impact on the
drone’s appearance in the scene. UDA aims to transfer
knowledge from the source to the target domain, despite
the lack of supervision in the target domain. This approach
has gained popularity in applications such as autonomous
land vehicles [19, 50, 51, 56] and other edge-AI, where DSs
are common, and supervised data is not guaranteed [13,38].
UDA models have also been employed extensively to ad-
dress DSs in drone detection [48,49]. However, unforeseen
situations that cause DSs, such as drones with novel shapes,
can still occur. Despite the trend toward using UDA in the
field, there is a lack of comprehensive exploration of spe-
cialized domain shift and UDA methodologies in drone de-
tection [7, 26, 45, 47, 48, 55, 57, 60, 64, 66]. This gap has
catalyzed our work to design a new dataset that addresses
these specific challenges.

Combining existing datasets often results in multiple un-
controlled DSs co-occurring, making it difficult to isolate
and examine the impact of specific shifts. Moreover, exist-
ing datasets lack systematic background segmentation and
comprehensive coverage of DS types, making manual anno-
tations costly and impractical. To overcome this, the DrIFT
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Figure 1. Samples of the DrIFT dataset: a) aerial PoVs in different seasons for both real and synthetic data, b) ground PoV real and
synthetic data that has been recorded in winter with a sky, tree, or ground background, c) adverse weather in a synthetic environment for
both aerial and ground PoV data, and d) ground truth bounding boxes and background segmentation maps have been illustrated in first two
rows. The utilized drones have been also depicted in the last row.

dataset was designed to provide a controlled environment
in which individual DS types, PoVs, season, weather, and
background, can be studied independently. DrIFT ensures a
balanced distribution across its fourteen distinct domains,
addressing limitations in previous datasets, and enabling
the systematic study of multiple DS types simultaneously.
Driven by the need to address these shortages, we present
the DrIFT dataset with the following pivotal contributions:

1. The DrIFT dataset introduces a vision-based drone de-
tection dataset. Uniquely, DrIFT comprises fourteen
distinct domains constructed by combinations of four
major domain shifts: PoV, synthetic-to-real, season,
and weather. In most domains, there are sky, trees,
and ground backgrounds.

2. We employ BG segmentation maps to introduce the
concept of BG shift as a distinct challenge. This novel
approach allows us to report BG-wise metrics (e.g.,
APS

50:AP50 of sky background detections), providing
a focused study on how BG shift influence the object
detection.

3. We introduce a novel uncertainty evaluation method
for OD, surpassing existing methods (Tab. 3). Our
method, utilizing a score map, offers significant ad-
vantages such as lower complexity of postprocessing
and superior capability in capturing DS.

4. Our uncertainty-aware UDA method outperforms
state-of-the-art UDA methods for drone detection
(Tab. 4).

Dataset Target Real/Synt. PoV #DS

[11] Multiple Real Gr. 0
[55] Single Real Gr. 0
[26] Single Real Gr. 0
[66] Single Real Aerial 0
[47] Multiple Real Aerial 0
[48] Multiple Real+Synt. - 1
[7] Multiple Real Gr. 0
[60] Multiple Real Aerial 0
[57] Single Real Gr. 0
[45] Single Real Gr. 0
[64] Multiple Real Gr. 0
[1] Multiple Real Gr. 0
[4] Multiple Synt. Gr.+Aerial 0
[15] Single Real Gr. 0

DrIFT Multiple Real+Synt. Gr.+Aerial 4

Table 1. Drone Datasets: The DrIFT dataset, as the first drone de-
tection dataset to study four DSs, includes image frames with mul-
tiple drones, real and synthetic data, and ground and aerial PoVs.
The ”#DS” indicates the number of types of DSs studied.

2. Related Work

2.1. Drone Datasets

Drone datasets have recently become publicly available
to address the increasing interest in drone detection [27].
Many datasets have significant limitations as it is obvi-
ous in Tab. 1. For instance, the dataset in [11] lacks cer-
tain weather conditions and uses a stationary camera. The



datasets in [55] and [26] are limited to single PoVs. The
data set in [66] is restricted to partly cloudy and clear
weather. Other datasets [7, 47, 60] offer limited diversity
in weather and PoVs. UAV-200 [48] uses supervised do-
main adaptation with a fraction of the target domain during
training and only examines the synthetic-to-real DS, while
DrIFT studies four types of domain shift in an UDA man-
ner. The number of DS types studied is indicated in Tab. 1.
The datasets in [57] and [64] feature multiple drone models
but lack comprehensive DSs. The datasets in [1] and [15]
focus primarily on ground PoV videos with limited weather
conditions. [4] lacks real-world DSs.

The DrIFT dataset introduces fourteen distinct domains
constructed by combinations of four major DS elements:
PoV, synthetic to real, season, and weather, with sky, trees,
and ground backgrounds (Fig. 1). DrIFT uniquely empha-
sizes BG shift as a separate challenge and employs BG seg-
mentation maps to create BG-wise metrics. This compre-
hensive approach addresses the lack of datasets that study
various DSs in drone detection, making DrIFT the first
dataset to comprehensively study all four DSs.

2.2. Land Vehicles Datasets

Land vehicles datasets constitute another topic similar to
those of drones within the realm of autonomous vehicles.
As inspiration for DrIFT, the SHIFT [56] autonomous driv-
ing dataset offers DSs across a spectrum of parameters, such
as weather conditions, time of day, and vehicle and pedes-
trian density, but does not investigate BG shifts.

2.3. Uncertainty Estimation

Uncertainty estimation is crucial for assessing the safety
level of autonomous vehicles, especially drones, by effec-
tively dealing with DS. Conventional methods categorize
uncertainty in deep learning into aleatoric and epistemic
uncertainties. Aleatoric uncertainty arises from data noise,
while epistemic uncertainty is due to limited data or domain
coverage, which is more relevant to DS [17].

Historically, uncertainty estimation involves sampling-
based techniques like Monte Carlo dropout (MCDO) [20],
which, although effective in capturing epistemic uncer-
tainty, are computationally intensive due to their iterative
nature and post-processing complexity [22].

To address computational constraints and accurately cap-
ture the epistemic uncertainty arising from data gaps, recent
studies [43, 44] explore using gradient self-information di-
rectly to assess uncertainty. Nevertheless, they do not inher-
ently encompass the true essence of uncertainty.

To address these computational constraints and the lack
of a comprehensive sense of uncertainty, we leverage an ef-
ficient approach that combines the strengths of MCDO with
a simplified post-processing mechanism. Our method uti-
lizes MCDO to generate uncertainty maps for each detec-

tion, performing multiple inference passes and aggregating
these uncertainties into an overall score map [40], which
reduces the postprocessing complexity (Sec. 4.1).

2.4. Detection Calibration Error Estimation (D-
ECE)

D-ECE is critical for providing accurate confidence as-
sessments in neural networks, especially for safety-critical
applications. The calibration error measures the alignment
between the predicted confidence and the actual results,
helping to assess the reliability of a model [23, 32]. D-ECE
extends from classification-based calibration error estima-
tion, but applies specifically to detection tasks, focusing
on the regression outputs of object detectors. The concept,
introduced by [32], addresses unique detection confidence
calibration errors. Further details on its calculation are pro-
vided in Sec. 4.1.

2.5. Unsupervised Domain Adaptation (UDA)

UDA addresses domain shift by transferring knowledge
from a labeled source domain to an unlabeled target do-
main. UDA for object detection was first introduced by [8].

Many approaches in UDA have been introduced that
come with notable limitations. Pseudo-labeling and self-
training methods, such as [30] and [29], generate target
pseudo-labels, but incorrect labels can propagate errors,
especially in complex backgrounds like our application.
Image-to-image translation techniques [24, 52] reduce the
domain gap by converting source images into the target
style, but these often introduce artifacts and require exten-
sive training data to perform well, which is not feasible in
our application.

Among the more recent advancements, uncertainty-
aware methods have gained attention for their ability to
improve domain adaptation by estimating and incorpo-
rating prediction uncertainties. These methods, such as
[6, 21, 37, 39], leverage uncertainty metrics to focus on ar-
eas where domain shifts are most pronounced. Adversarial
training, introduced by [8], complements this by aligning
feature distributions between domains. Together, these ap-
proaches provide a robust mechanism for handling domain
shift, focusing on confident regions and learning domain-
invariant features to reduce errors and enhance model ro-
bustness. The details of our approach are discussed further
in Section 4.

3. DrIFT Dataset
We have developed a vision-based drone detection

dataset consisting of image frames, ground truth bounding
boxes, and BG segmentation maps (Fig. 1d). In Sec. 3.1, an
overview of the DrIFT dataset’s sensor, experimental setup,
annotation, and dataset design has been presented. In the
following, precise information regarding DrIFT’s various



domains has been compiled to represent the dataset’s pur-
pose for the DS. For more detailed statistics of DrIFT the
reader can go through the supplementary materials.

3.1. The DrIFT Story

Real Ground PoV’s video recordings for the DrIFT
dataset were captured with a Bosch pan-tilt-zoom (PTZ)
camera. The DJI Phantom 2/3, Phantom 4/Pro, Inspire, and
Mavic (Fig. 1d) were captured between 0.1 and 1.5 kilome-
ters away in the recordings. There is a drone predominantly
present in the frames. The semi-automatic annotation has
been done using the CVAT [14]. We have generated mul-
tiple other domains of data in our dataset to represent the
DS.

Real Aerial PoV has been added to the DrIFT dataset to
achieve the PoV shift concept. For the aerial PoV, a custom-
built drone model was utilized (Fig. 1d). In this experiment,
mobile electro-optical cameras, the Infiniti STR-8MP-3X
and GoPro, were used to record multiple drone footage be-
tween 20 and 100 meters in the line of sight. The frames
were recorded in different seasons, resulting in various BGs,
such as the sky, trees in various seasons, and the ground
with different colors.

Synthetic Data is recorded in the AirSim [53] simulator
for simulating real-world data counterparts in a simulated
environment for all domains for considering synthetic-to-
real domain shift, and due to the impossibility of flying in
adverse weather conditions.

It is a common practice for domain-adaptive network
training to have the same number of samples in the source
and target domains [12]. Therefore, we designed the DrIFT
dataset to maintain a balanced number of samples across
domains within both the training and validation sets as long
as we had sufficient real data for the domains.

Background Segmentation as one of the contributions
of the DrIFT dataset, is important for its innovative ex-
ploration of BG shift. All validation frames’ background
have been segmented into sky, tree, and ground segments
(Fig. 1d) using the Track Anything platform [31, 61]. By
utilizing segmentation maps, it becomes feasible to utilize
different metrics corresponding to different backgrounds
(Tab. 2, details in Sec. 4.1).

All annotations were then double-checked and refined by
human annotators to ensure accuracy.

3.2. Dataset Design

To address a deficiency in drone detection datasets, we
designed DrIFT with a concentration on studying common
domain shifts in the wild.

Synthetic-to-Real: In practical scenarios, capturing ev-
ery conceivable real-world situation can be infeasible due
to logistical challenges, resource limitations, and the pro-
hibitive costs of annotation. To this end, we brought up syn-

thetic data in order to initiate research on synthetic-to-real
DS. In DrIFT, all real-world data domains have simulated
counterparts except for adverse weather conditions that do
not exist in our real-world part of the dataset.

PoV Shift: The camera’s point of PoV change (ground
and aerial) contains different BGs and orientations of the
target objects. This shift can significantly impact detection
performance, making it a distinct type of DS.

Weather Shift: drones cannot be easily deployed in ad-
verse weather. On the other hand, because this is a common
DS in the wild, the system must be robust to it. Therefore,
synthetic data is collected for studying weather DS.

Background Shift: The unseen background [63], also
called BG shift in DrIFT, problem is present in various
drone detection or autonomous driving datasets regarding
the aforementioned DS. Nevertheless, no study has explic-
itly looked into the BG shift in object detection using BG
segmentation maps. DrIFT investigates the BG shift from
the sky to the tree and ground.

4. DrIFT Benchmark
This section first provides a comprehensive overview of

the methodology used for the benchmark. The following
subsection provides a comprehensive overview of the dif-
ferent benchmark scenarios. Subsequently, the results of
the benchmark are reported. This section concludes with a
comprehensive analysis of the benchmark outcomes and the
dominant challenges of the DrIFT dataset. The supporting
statements will be presented in the supplementary materials.

4.1. Methodology

4.1.1 Problem definition

The primary goal of the DrIFT benchmark is to evaluate
the performance of OD models under various shifts and
UDA methods capabilities to address this issue. Perfor-
mance metrics include Average Precision (AP), Uncertainty
metrics, and D-ECE that are reported BG-wise.

Let D = {(Xi,Yi)}Ni=1 be the dataset, where Xi are the
input images and Yi are the set of ground truth annotations
containing bounding box coordinates and class labels for
objects within each input image. The OD model predicts a
set of detections Ŷi = {ŷj

i}
Nxi

j=1 , where each detection ŷj
i =

(b̂ji, ĉ
j
i, ŝ

j
i) consists of bounding box coordinates b̂ji, class

label ĉji, and confidence score ŝji. N and Nxi
are the number

of samples in the dataset and the number of detections for
the i-th input image, respectively.

In OD, after initial detections, the Non-Maximum Sup-
pression (NMS) process [41] filters out redundant or sub-
optimal detections. NMS first generates a set of candi-
dates for each detection, defined as all other predictions
sharing the same class label and having an Intersection-
over-Union (IoU), measures the overlap between bounding



Figure 2. Uncertainty-aware UDA framework: In addition to supervised learning on the source domain, the concatenated std and entropy
maps are input into the discriminator as part of the adversarial learning process. Magnified regions around detections are shown for better
visualization. Colorbars are placed on the right side of the std and entropy maps. Green-solid and red-dash lines represent the source and
target domains paths, respectively. All detections from multiple iterations are displayed to illustrate the generation and behavior of the
uncertainty maps.

boxes, above a threshold ϵ. Detections below a confidence
threshold δ are then discarded. The candidate set for a given
detection ŷj

i is defined as:

Cŷj
i
= {ŷk

i |k ̸= j, IoU(ŷk
i , ŷ

j
i) ≥ ϵ, ĉki = ĉji, ŝ

k
i ≥ δ}. (1)

After filtering, the remaining detection with the highest
confidence score is retained as the final prediction. AP [41]
has been employed to quantify OD performance.

4.1.2 Performance Metrics

D-ECE [32] is just used in our benchmark to study do-
main shift impacts on the calibration error. D-ECE [32]
was calculated by binning the confidence space as well as
box coordination parameters space in which there are Nk

equally distributed bins corresponding to the k-th dimen-

sion, Ntotal =

K∏
k=1

Nk. The goal of binning is to account

for variations in calibration error across different confidence
levels and spatial dimensions, ensuring that errors are cap-
tured in an unbiased manner. Therefore, D-ECE could be
formalized

D-ECEk =

Nk∑
n=1

|I(n)|
|ŷ|

|prec(n)− conf(n)|. (2)

Within Eq. (2), |I(n)| is used to describe the cardinality of
the bin, whereas |ŷ| represents the total number of detection
samples. conf(n) denotes the mean confidence score of the
detections within the bin, whereas prec(n) is a statistical
metric that quantifies the proportion of true positives among
the detections in the bin.

We utilize MCDO-based and gradient self-information
metrics to estimate uncertainty in the presence of DS
and compare their capabilities with our proposed method,
MCDO-map, to take advantage of them in our UDA

method. The utilized methods are referred to as MCDO-
NMS and Grad-loss, respectively. The Grad-loss cap-
tures the degree of epistemic uncertainty for each detection.
Grad-loss-localization and Grad-loss-classification refer
to the localization and classification terms, respectively.

The MCDO-based method involves running multiple
inference passes with dropout activated. Detections are
matched to a candidate list based on the highest IoU thresh-
old. The standard deviation of the localization parameters
and the entropy of the mean classification probabilities are
calculated for each list. This technique includes MCDO-
NMS-localization and MCDO-NMS-classification. For
details on these methods, please refer to the supplementary
materials.

As opposed to utilizing NMS-based or data association
techniques in an MCDO scheme, a score map is constructed
in a pixel-wise manner. Given the predictions, we convert
the detection outputs to a 3D map. Let Ŷi = {ŷj

i}
Nxi

j=1 be
the set of detections for an input image. The score map S
is a tensor of shape (H,W,C+ 1), where H and W are the
height and width of the input image, and C is the number
of classes. For each detection ŷj

i , the score ŝji is assigned to
each pixel inside the bounding box b̂ji,

S(x, y, c) +=

{
ŝji (x, y) ∈ b̂ji, c = ĉji
(1− ŝji) (x, y) ∈ b̂ji, c = BG

. (3)

The S is zero initiated, resulting in all-zero vectors for pix-
els that are not contained within any bounding box. For
these pixels, we replace the all-zero vectors with a vector
with a 1 for the background element and zeros for all other
elements. After populating the score map, we normalize it
using the softmax function. Next, we calculate the mean
and standard deviation of the score map over multiple iter-
ations of our object detector forward pass that

S̄ =
1

Nmap

Nmap∑
n=1

Sn, σS =

√√√√ 1

Nmap

Nmap∑
n=1

(Sn − S̄)2. (4)



Finally, we compute the entropy of the mean score map,
HS̄(x, y, :) = −

∑
c S(x, y, c) logS(x, y, c), and concate-

nate the standard deviations to create the uncertainty map,
MCDO-map = concat(HS̄(x, y, :),

∑
c σS(x, y, c)).

From an intuitive standpoint, it can be observed that increas-
ing changes in localization parameters of the predictions are
associated with a corresponding increase in the standard de-
viation of the boundaries surrounding pixels. For an ex-
ample, in Fig. 2, the left magnified detection in the target
std map shows higher deviation (with colors closer to red)
compared to the source std map, where the corresponding
detection is mostly blue, indicating lower deviation across
pixels. Similarly, a higher frequency of change in prediction
scores is shown to be linked to an elevated level of entropy.
The same behavior in the entropy maps can be observed in
Fig. 2. In contrast to traditional MCDO-based approaches,
instead of handling individual bounding boxes from each it-
eration and suffering post-processing complexity [17], our
method generates a pixel-wise score map during each itera-
tion and avoids complex post-processing.

4.1.3 Domain Shift and Adaptation

DS occurs when the training (source) domain Ds and
the testing (target) domain Dt differ, leading to a per-
formance drop in machine learning models. Let Ds =
{(Xs

i ,Y
s
i )}N

s

i=1 and Dt = {(Xt
i ,Y

t
i )}N

t

i=1. We denote the
source and target distributions as ps(X,Y) and pt(X,Y),
respectively. Distribution shift is defined as ps(X,Y) ̸=
pt(X,Y). If we consider ps(X,Y) = ps(X)ps(Y|X)
and pt(X,Y) = pt(X)pt(Y|X) , the DS happens when
ps(X) ̸= pt(X), ps(Y|X) = pt(Y|X).

Our UDA method focuses on leveraging uncertainty in-
formation to enhance the robustness of the object detector
in the presence of DS. We got inspired by ADVENT [59]
while modifying it by changing the representation of in-
put data to the discriminator and introducing a novel uncer-
tainty estimation method. The intuition behind this method
is that DS introduce uncertainty in predictions, especially
in regions where the model is less confident. Our un-
certainty maps highlight areas where the domain shift has
the most impact, guiding the adaptation process to focus
on these challenging regions. Following the concatena-
tion process, the MCDO-map is subsequently forwarded
to a domain discriminator to fool it, initiating adversar-
ial training (Fig. 2). The calculation of the overall loss is
Ltotal = Ldetection − λ × Ladv. Where the detection loss
Ldetection is a combination of cross-entropy classification
and smooth L1 regression loss, Ldetection = Lcls + Lreg.
The adversarial loss Ladv is

Ladv = −EX∼ps logD(MCDO-map(X))

−EX∼pt log(1−D(MCDO-map(X))),
(5)

Figure 3. Correlation heatmap: The KL divergence of feature
maps distributions and all metrics are calculated between the
source (domain I in Tab. 2) and target domains. MCDO-map’s
high positive correlation with KL divergence shows high capabili-
ties of MCDO-map to capture the DS.

when the D is the discriminator network. The detec-
tion base network is updated to minimize the total loss,
ω∗ = argminω Ltotal, while the discriminator net-
work is updated to maximize the adversarial loss, θ∗ =
argmaxθ Ladv .

4.2. Benchmark Scenarios

We will begin our benchmark with Tab. 2, illustrating
the impact of domain shift on object detection using the
AP, uncertainty, and D-ECE metrics. Tab. 3 presents a
comparison between our proposed MCDO-map method and
other uncertainty metrics. Finally, our novel uncertainty-
aware UDA object detector is compared with state-of-the-
art (SOTA) UDA methods in Tab. 4. Supplementary mate-
rials have been provided to support our discussions.

Background-wise Metrics: To assess OD performance
under BG shifts, we introduce BG-wise metrics, which cal-
culate metrics separately for different BGs (e.g., sky, tree,
ground). Given detections Ŷ and ground truth Y, we clas-
sify each into BG categories using segmentation maps to
identify the background category to which most of the pix-
els within the bounding box belong. The metric M for each
BG category can be expressed

Mb.g. = M(Ŷb.g,Yb.g.), b.g. ∈ {sky, tree, ground}. (6)

These metrics provide a detailed analysis of how different
BGs affect object detection performance.

4.3. Experiments and Results

Tab. 2 shows different DS scenarios and their impact on
object detection models. It is our contribution that metrics
are reported background-wise, highlighting the influence of
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n Target Domain AP50 ↑ % MCDO-map↓ D-ECE↓ ×10−6

PoV Source Season Weather Total Sky Tree Ground ×10−4 Total Sky Tree Ground

I

ground synthetic winter normal 40.7 67.1 0.2 54.7 3582 674 248 576 1176

ground real winter normal 3.2 9.5 0.1 0.0 5355 2253 1586 69 2623

ground synthetic adverse rainy - 75.8 - - 3866 - 7679 - -
ground synthetic adverse snowy - 63.0 - - 4686 - 6803 - -
ground synthetic adverse foggy - 98.7 - - 4454 - 1796 - -

aerial synthetic winter normal 12.7 35.6 0.0 2.4 4287 4095 2063 2819 5518
aerial synthetic fall normal 41.5 81.0 10.8 32.9 4680 7124 8092 5275 3022
aerial synthetic summer normal 51.5 74.3 64.8 15.3 4677 6447 7327 2245 1444

aerial synthetic adverse rainy - 26.1 - - 4084 - 2923 - -
aerial synthetic adverse snowy - 19.8 - - 4835 - 8008 - -
aerial synthetic adverse foggy - 35.7 - - 4394 - 4142 - -

II ground real winter normal 34.4 73.7 0.5 29.0 2673 1242 1105 1694 0329

Table 2. DS impact on Faster R-CNN detector trained on source domain I or II in terms of AP, uncertainty, and D-ECE. The Faster R-CNN
detector is validated on different target domains. Shaded cells show the shifted element in each target domain. AP and D-ECE are reported
BG-wise, although the MCDO-map uncertainty is reported totally. For adverse weather, we have just the sky background. Source domain
I: ground-synthetic-winter-normal-sky, source domain II: ground-real-winter-normal-sky

background shifts. The AP under the Sky column in row
one is the reference. Significant AP decreases are evident,
such as in row two when shifting from synthetic to real.
PoV and weather shifts in rows 9 to 11 also show notable
changes. Comparing the reference AP and the sky APs in
other rows demonstrates decreased APs for tree and ground
backgrounds (see Fig. 7 in supplementary material). The
domain I in Tab. 2 is the source domain all over the text
unless other domains are mentioned.

We calculated the Kullback-Leibler (KL) divergence be-
tween source and target domain feature map distributions
(see supplementary material) to analyze the relationship
between metrics and different shifts from Tab. 2. Fig. 3
shows a heatmap of Pearson correlations among AP, D-
ECE, MCDO-map, and KL divergence. The high positive
correlation between our MCDO-map and KL divergence in-
dicates the MCDO-map’s effectiveness in capturing DS.

The negative correlation of AP with MCDO-map and KL
divergence suggests that higher AP corresponds to lower
uncertainty and smaller feature map distribution distances.
The positive correlation between AP and D-ECE indicates
model miscalibration under DS. Additionally, the positive
relation between D-ECE, MCDO-map, and KL divergence
highlights their significant association with DS.

The goal of Tab. 3 is to compare our MCDO-map method
with the MCDO-NMS and Grad-loss. Our method consis-
tently shows increased uncertainty with DS, highlighting its
effectiveness in capturing DSs. The wider violin plots for
MCDO-map in Fig. 4 of supplementary material demon-
strate its superior capability to separate different DS lev-
els compared to other metrics. MCDO-NMS-Classification

for TPs shows some capability in separating different DSs,
Tab. 3 and supplementaary material, but requires supervi-
sion and often decreases with DS. Grad-loss-localization is
consistently capturing the DS (Tab. 3) but lacks the potential
to separate DSs effectively.

Our results in Fig. 3 and supplementary material further
support the MCDO-map’s effectiveness in capturing DS.
Thus, we conclude that the MCDO-map is the best method
for our UDA approach, offering significant improvements
over traditional uncertainty estimation techniques.

In Tab. 4, the results of some SOTA UDA object detec-
tors on the DrIFT dataset are reported alongside our results.
One significant DS is from sky to tree, where AP dropped
from 67.1 to 0.2 (Tab. 2, first row). Our UDA method out-
performs others with an AP of 10.7 for the tree background
and 46.3 in total, demonstrating its effectiveness in adapt-
ing to different BGs. Similarly, for the ground background
domain, our method achieves an AP of 44.8 in total and 1.2
for the tree background, showcasing robustness.

For the aerial-synthetic-winter-normal domain, multiple
BGs in each frame could take place, so we did not spec-
ify any BG for it. Our UDA method achieves the highest
AP in total (17.8), sky (41.3), and tree (0.5), indicating its
capability to adapt to different PoVs and complex scenes.
In the ground-real-winter-normal-sky domain, our method
achieves the highest AP in total (5.7) and tree (0.8), proving
its effectiveness with real-world data and different seasons.
The results are consistent for tree and ground backgrounds
as well, demonstrating our method’s adaptability for two
types of DSs occurring simultaneously.

Our method aims to deceive a domain discriminator by



Validation Domain MCDO-NMS×10−3 MCDO-Map grad-loss×10−3

Localization Classification ×10−4 Loc. Cls.

PoV Source Season Weather Total TP FP Total TP FP

ground synthetic winter normal 107 63 107 436 141 439 3582 445 564

ground real winter normal 173 56 180 495 298 508 5355 434 692

ground synthetic adverse rainy 98 67 99 401 112 404 3866 390 634
ground synthetic adverse snowy 79 58 79 454 183 456 4686 458 658
ground synthetic adverse foggy 85 83 85 449 241 484 4454 335 642

aerial synthetic winter normal 101 62 103 407 166 417 4287 444 500
aerial synthetic fall normal 92 105 92 523 312 529 4680 435 653
aerial synthetic summer normal 94 92 94 538 269 543 4677 434 658

aerial synthetic adverse rainy 100 092 101 440 238 446 4084 468 554
aerial synthetic adverse snowy 85 67 85 598 298 605 4835 445 690
aerial synthetic adverse foggy 105 116 103 468 390 477 4394 445 635

Table 3. Uncertainty Metrics Comparison: The network is Faster R-CNN trained on the Tab. 2’s domain I. Each row shows the validation
domain in which experiments have been done for the sky background. In each row, the uncertainty level has been evaluated by three
different methods. MCDO-NMS reported separately for TP and FP detections. Shaded cells show the shifted element. Loc.: localization,
Cls.: Classification

Method Total Sky Tree Gr.

S.O. 40.7 67.1 0.2 54.7

C.fMix [34] 44.0 66.8 5.4 56.3
SAPN [65] 41.6 61.4 5.1 53.2
PT [6] 42.5 64.9 6.3 55.3

Ours 46.3 62.1 10.7 55.9

(a) ground-synthetic-winter-normal-tree

Method Total Sky Tree Gr.

S.O. 40.7 67.1 0.2 54.7

C.fMix [34] 42.5 64.5 0.5 56.0
SAPN [65] 41.6 61.4 5.1 53.2
PT [6] 42.0 61.5 0.9 54.2

Ours 44.8 66.0 1.2 56.5

(b) ground-synthetic-winter-normal-ground

Method Total Sky Tree Gr.

S.O. 12.7 35.6 0.0 2.4

C.Mix [34] 15.3 37.1 0.4 3.2
SAPN [65] 14.3 35.9 0.3 2.9
PT [6] 14.7 36.6 0.6 3.1

Ours 17.8 41.3 0.5 3.6

(c) aerial-synthetic-winter-normal

Method Total Sky Tree Gr.

S.O 3.2 9.5 0.1 0.0

C.Mix [34] 5.0 13.2 0.7 0.3
SAPN [65] 4.8 12.8 0.6 0.2
PT [6] 4.6 12.5 0.5 0.2

Ours 5.7 14.0 0.8 0.4

(d) ground-real-winter-normal-sky

Method Total Sky Tree Gr.

S.O. 3.2 9.5 0.1 0.0

C.Mix [34] 7.0 10.5 5.0 0.3
SAPN [65] 6.8 10.0 4.8 0.2
PT [6] 6.5 10.2 4.6 0.3

Ours 8.2 11.0 6.0 0.5

(e) ground-real-winter-normal-tree

Method Total Sky Tree Gr.

S.O. 3.2 9.5 0.1 0.0

C.Mix [34] 7.1 10.0 4.8 0.4
SAPN [65] 6.8 9.8 4.9 0.2
PT [6] 7.1 9.7 5.2 0.3

Ours 8.9 9.9 4.6 0.9

(f) ground-real-winter-normal-ground

Table 4. Background-wise mAP of different UDA methods for different domain shifts: Our UDA method surpasses the SOTA techniques
in most cases. The target domain is written below each subtable. S.O.: Source Only (trained network on Tab. 2’s domain I).

making the uncertainty maps for both source and target do-
mains nearly identical. This dual focus on source and target
domain alignment is crucial for robust performance across
various DSs. The adaptation process involves a trade-off,
accepting some degradation in the source domain to achieve
significant improvements in the target domain.

5. Conclusion

The DrIFT dataset addresses the need for reliable vi-
sual drone detection in diverse environments by introducing

fourteen distinct domains and emphasizing BG shift with
BG segmentation maps. Our empirical findings show a pos-
itive correlation between MCDO-map uncertainty, domain
shift, and D-ECE, and a negative correlation with AP. The
MCDO-map metric outperformed other uncertainty metrics
in capturing DS. Our uncertainty-aware UDA object detec-
tor also surpassed SOTA methods. In future work, we aim
to explore more nuanced domain adaptation techniques that
minimize source domain performance degradation trade-
off.
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