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Abstract 

The phenomenon of elderly falls within residential homes presents a pressing challenge, 

demanding immediate and efficient response to prevent serious injury or fatality. These incidents 

not only threaten the well-being of residents but also impinge upon their confidence in feeling 

secure within these facilities. A robust solution could significantly reduce response times and 

improve overall safety, thereby making a considerable impact in the field of elderly care. 

The core problem we address is the reliable detection of falls among the elderly in a residential 

environment. Current mainstream solutions such as wearables with accelerometers and barometers 

are hindered by practical limitations — the elderly, especially those with cognitive impairments 

like dementia, may forget to wear, charge, or find these devices inconvenient. A viable solution 

must therefore be unobtrusive and require minimal interaction from the residents. 

To circumvent the limitations of wearable technologies, we propose a novel, contactless detection 

system based on radar technology. This approach forgoes cameras to reduce privacy concerns and 

employs a radar system to generate a point cloud over a predetermined range. A minicomputer 

processes this data using a sequential machine learning algorithm to detect falls. Upon detection, 

the system promptly activates an alarm in the home via a relay connection, ensuring immediate 

notification without compromising resident privacy or comfort. 

Preliminary results indicate that our radar-based system can detect falls with a high degree of 

accuracy over 90%. Although quantifiable results regarding response time improvement and fall 

detection rates are beyond the scope of this abstract, the radar system shows promise as an effective 

alternative to wearables and surveillance-based methods. 

The proposed radar-based fall detection system offers a significant advancement in elderly care 

technology, respecting privacy while maintaining a high level of accuracy. It lays the groundwork 

for future innovation, including fall prevention and vital health sign monitoring. The utilisation of 

mmWave technology in this context may herald a new era in non-intrusive resident monitoring, 

potentially generalizable to various care settings. 
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Introduction 

Problem Definition: 

Design an easy to implement fall detection solution used in residential homes by nurses such that 

it is accurate, contactless (non-wearable), camera-free, cost-efficient with instant notifications to 

the nurses. It is to be able to accurately discern the elderly subject and detect all types of falls with 

no false alarm. 

Problem Statement: 

In residential settings, falls among the elderly and those with mobility impairments present a 

significant health risk, often leading to severe injuries and critical emergencies. Rapid detection 

and response to such falls are imperative, yet current solutions often intrude on privacy or require 

direct contact, which can be uncomfortable or impractical. 

Project Overview: 

This project aims to develop an innovative fall detection system that harnesses mmWave FMCW 

radar technology. Our objective is to create a non-intrusive, privacy-respecting mechanism that 

accurately identifies falls, differentiates them from other movements, and instantly notifies 

caregivers, improving response times and outcomes for residents in non-hospital environments. 

Scope and Objectives: 

Our approach encompasses a comprehensive hardware integration process, establishing seamless 

communication between the radar technology and data acquisition systems. We intend to explore 

a range of data analysis and machine learning algorithms, seeking to identify the most effective 

method for fall detection through extensive testing—including both frame-by-frame and sequential 

data analysis. 

Notification System Testing: 

A critical component of our system is the notification protocol, for which we will test both relay 

and text message-based systems. Our aim is to ensure that the chosen method provides reliable 

and immediate alerts to facilitate a quick response. 

Expected Outcomes: 

The anticipated outcome is a fully functional fall detection system with a proven algorithm offering 

high accuracy, capable of integrating into existing care infrastructure. By comparing different 

models and notification methods, we expect to conclude with a solution that sets a new standard 

for fall detection in terms of both efficiency and respect for user privacy. 
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Benchmarking and Specifications 

Benchmarking: 

To conduct better benchmark testing, we need to more objectively analyze similar products on the 

market. For this reason, we rate similar products on the market from five different aspects in the 

table below for analysis. 

Table 1: Product Rating Scale 

Criteria  Contactless Price 

(<500$) 

Privacy Reliability in 

Identifying 

falls 

Can monitor 

Vitals 

Points 1/5 1/5 1/5 1/5 1/5 

 

Comparison of Existing Solutions 

In this section we put together in a table the ratings and final specs of four different products along 

with our researched reviews of it to help us with our benchmarking. 

Table 2: Comparison of Existing Solutions 

Product Name Ratings Final Specs Comments 

SensFloor 

 

4/5 1. Around 4354.11 ~ 

5079.8 minimum + 

Service agreement 

cost for annual 

maintenance and 

regular software 

updates + Require 

renovating floor to 

install on existing 

floor. 

2. Require 0.5 W/sqm 

3. 98% Accuracy 

4. Last 20 years 

minimum 

5. Does not use 

camera to monitor 

6. Contactless 

This has the largest 

coverable area despite 

the expenses to 

deploy the system in a 

room. It can detect 

fall detection to 

slow/fast falls. It can 

also set up guide 

lights at night for 

elders. Overall, it 

provides good 

accuracy in fall 

detection at all places 

with minimum 

change in the room's 

appearance. 

AltumView Fall 

Detection 

4/5 1. $ 299.99 hardware 

cost + 0~6.7 cad / 

month for its feature 

2. Stick Figure is sent 

3. Contactless 

4. Good accuracy 

comparable to the 

Provides quite a good 

angle of monitoring 

(185 degrees). It 

implements a video 

camera that features 

face recognition to 

collect statistics. 
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radar. Numerical 

value not found 

5. Batteries is not 

required 

However, it has the 

worst privacy among 

the 4 products since it 

sends stick figures to 

its app for monitoring. 

UnaliWear Kanega 

Smartwatch 

 

3/5 1. $ 149.99 + $ 59.95 

monthly plan 

2. Response time of 

46 seconds 

3. Not Contactless 

4. Batteries need to be 

recharged every 1.5 

days 

Unlike other 

products, this can be 

worn at all places. But 

it has the shortest 

battery lifetime 

Although, it comes 

extra battery so you 

can charge one 

battery a day which is 

tedious. 

 

Medical Guardian 

Mobile 2.0 

 

2/5 1. Not Contactless 

2. < 90% accuracy 

3. Require charging 

every 3~5 days 

4. Minimum $ 

44.95/month + $ 

10/month for fall 

detection service 

5. Response time of 

24~30 seconds 

Although this product 

is the cheapest among 

the other 3, it only has 

a one-way 

communication line, 

which is inconvenient 

in a false alarm 

situation. It is also 

required to push an 

external button if fall 

detection service is 

not available. 
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Metrics and Units: 

After comparison and investigation, we understood the important indicators required for similar 

products to realize their functions and determined the units. We have placed the important 

indicators and their units in the following tables. 

Table 3: Metrics and Units 

Metric Descriptor UNIT 

Notification Delay Seconds (s) 

Sample Rate needed for 

frame detection  

Hertz (Hz) 

Computation power 

requirements 

Floating-point operations per second (FLOPS) 

Power Consumption Watts (W) 

Uptime Hours (h) 

Accuracy Percentage (%)  

Range Resolution  Centimeters  

Elevation Resolution  degrees 

Detection Range  Meters  

 

Linking metrics to needs: 

After we determined the important indicators required for the product, we related these indicators 

to the needs raised by customers and made them into the following table. This can help us analyze 

what indicators need to be achieved to fulfill customer needs. 

Table 4: Linking metrics to needs 

   1 2 3 4 5 6 7 

  M

e

t

r

i

c

s 

No

tifi

cat

ion 

De

lay 

Comp

utatio

n 

power 

requir

ement

s 

Po

we

r 

con

su

mp

tio

n 

Up 

Ti

me 

A

c

c

u

r

a

c

y 

Range 

resolutio

n  

Detectio

n range   

 Needs 

Index 

        

1 An Artificial 

Intelligence 

based fall 

detection 

solution 

 X X X  X   
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2 The solution 

should not 

use Cameras 

and machine 

vision 

 X X X  X   

3 The solution 

should be 

contactless   

 X X X  X   

4 The system 

should have 

very low lag 

time 

between 

acquisition, 

processing 

and 

notification. 

 X X X  X X X 

5 The system 

should have 

a very good 

coverage  

 X X X    X 

 Machine 

learning 

algorithm 

should be 

trained on 

distinguishi

ng the 

subject 

 

  X X   X X 

6 Machine 

learning 

algorithm 

should be 

trained on 

distinguishi

ng a fall 

from the 

subject 

sitting, or 

going to bed 

 

  X X  X   

7 The device 

should be 

battery free  

   X X    
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8 The solution 

should be 

24/7 

 

   X X    

 

 

  



InvisiFall 14 

Assign Marginal and Ideal Values 

Based on the analysis of the above tables, we derived a marginal and ideal value for each metric 

to achieve customer needs. 

Table 5: Assign Marginal and Ideal Values 

Metric 

ID 

Numbe

r 

Metric Descriptor UNIT Marginal Values Ideal Values 

1 Fall Accuracy Percentage (%) 

 
75 90 

2 Sample Rate needed 

for frame detection  

Hertz (Hz) 
100 200 

2 Notification Delay Seconds (s) 30 20 

7 Range Resolution Centimeters  8 4 

4 Power consumption Watts (W) 100 50 

9 Detection Range  Meters (m) 4 5 

5 Uptime Hours (h) 24 24 

 

Our initial goal for the fall detection is set to a relatively low percentage (recommended by our 

mentor) since we are testing out new radar technology in a laboratory environment. 

According to Nyquist sampling theorem, it is important that we sample the analog signal at least 

twice the frequency of the highest component. Hence, for the falls, the highest harmonics are 

observed in the range of 100Hz to 200 Hz. 

Notification delay of 20-30 seconds seems reasonable and achievable with the existing technology. 

This delay is enough for a retirement home caregiver to respond to any fall emergency. 

Apart from the above main indicators, secondary metrics provide another way to quantify system 

performance, not as critical as the primary indicators.  

The range resolution is important in identifying separate objects in the radial direction. The 

detection range should be at least 4 meters to fully cover about any standard sized room at the 

retirement home.  

The least power consumption is always expected but within practicality sense, 50 W is about the 

power consumption of the latest GaN based efficient power brick for phones and laptops, setting 

our base. 

We strive for 24 hrs system uptime due to the critical monitoring nature of the project. 
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Concept Generation and Analysis 

Overall Concept 

To start our effective concept hunt, we already had a mutually agreed upon basic abstract idea of 

how the system can look like. This proved to be really helpful in guiding us through a relatively 

narrow sample space at the final decision-making stage. We propose a radar-based sensing 

connected to a windows computer, functioning as the main computational element for processing 

the radar data. Then, the fall detection data and some essentials will be stored on a cloud before 

they are pushed to a mobile phone. At the same time, we were flexible in exploring other options 

that can replace or complement functionality of components discussed hereafter. 

  

Figure 1: Initial Draft of Concept 

Sensing Hardware Concept Generation 

Concept 1: IWR 1443 BOOST FMCW Radar (Texas Instrument): 

The IWR1443 BOOST is a compact FMCW radar sensor from Texas Instruments, renowned for 

its accuracy in range and velocity measurements. Its small size and advanced signal processing 

make it ideal for automotive and industrial applications. While offering high performance and 

versatility, considerations include cost, complexity, and power consumption. 

Concept 2: Depth Camera & Radar: 

Intel RealSense 3D D435 Camera 

The Intel RealSense 3D D435 Camera is a sophisticated depth sensing device designed for various 

applications such as robotics, augmented reality, virtual reality, and computer vision. It utilizes 

advanced depth perception technology to capture high-resolution depth images and generate 

precise 3D spatial data in real-time. With its compact design and versatile functionality, the 

RealSense D435 Camera offers developers and researchers a powerful tool for creating immersive 

experiences, enhancing navigation systems, and 
enabling precise object recognition. 
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UWB (Novela)  

UWB, or Ultra-Wideband, is a novel wireless communication technology that operates across a 

broad spectrum of frequencies with very low power for short-range, high-bandwidth data 

transmission. Its unique characteristics enable precise positioning and tracking applications, 

making it ideal for indoor navigation, asset tracking, and proximity-based services. 

Concept 3: BMP 581 pressure Sensor 

The pressure sensor, capable of detecting altitude changes with an accuracy of 20 centimeters, is 

utilized in smartwatches for fall detection. This sophisticated technology allows for the precise 

monitoring of altitude variations, enabling the device to identify potential falls quickly and 

accurately, enhancing user safety through timely alerts and responses.  

Concept 4: Accelerometer 

The accelerometer is another alternative component in smartwatches, that is designed to measure 

acceleration forces. This technology enables the detection of sudden movements and changes in 

orientation, making it an indispensable feature for fall detection. By analyzing acceleration data, 

smartwatches can accurately identify when a user may have fallen, triggering alerts and emergency 

responses, when necessary, thereby significantly enhancing user safety and providing peace of 

mind. 

Concept 5: Sensing floor 

Fall detection using sensing floors involves the integration of advanced sensor technologies within 

the flooring system to monitor and detect changes in pressure or vibrations that occur when a fall 

happens. These floors are equipped with a network of sensors that can distinguish between 

everyday activities and unusual events, such as a person falling. Upon detecting a fall, the system 

can instantly analyze the data to confirm the event and trigger an appropriate response, such as 

alerting caregivers or emergency services. 
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Concept Analyses: 

Table 6: Concept Analysis 

Grading is from 0-10 

depending on how 

close it meets the 

client needs 

Tar

get 

Spe

cifi

cati

on 

(W

eig

ht) 

Contact

less 

Power 

Consump

tion 

Data 

Transmis

sion 

Speed 

 

Can 

moni

tor 

Vital

s 

 

Total 

Weigh

ted 

Grade 

(1.0 

Scale) 

Concepts       

IWR1443BOOST 

Radar 

 10 10 5 10 0.80 

Camera & Radar  10 10 7 0 0.68 

BMP 581 – Pressure 

Sensor 

 0 7 10 10 0.67 

Accelerometer  0 7 10 9 0.65 

Sensing floor  10 10 9 0 0.76 

Final Weighted Grade = (0.4*Data Transmission Speed + 0.3*Contactless+ 0.2*Monitor Vitals 

+ 0.1*Power Consumption)/10 

Supporting calculation 

The table below shows calculations of the sampling rate. 

Table 7: Calculations of the sampling rate 

Device Parameter 

Measured 

Typical 

Sampling 

Rate 

Equation 

converting 

everything to 

HZ 

Converte

d Rate 

IWR1443BOOST 

Radar 

Distance, 

velocity, angle 

Frame 

duration is 

50ms** 

1 / 0.05 s = 20 

Hz 

20 Hz 

Camera & 

Radar  

 

Camera Spatial details 30-60 fps 1 fps = 1 Hz 30-60 Hz 

 Radar Distance/velocity kHz range 1 kHz = 1000 

Hz 

~1000Hz 

BMP 581 Pressure 

Sensor 

Atmospheric 

pressure changes 

480 Hz N/A (already in 

Hz) 

480 Hz 

Accelerometer Acceleration 

forces 

100 Hz to 

several kHz 

1 kHz = 1000 

Hz 

~1000Hz 
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Sensing Floor Pressure and 

vibrations 

10 Hz to 

over 100 Hz 

N/A (already in 

Hz) 

10-100 Hz 

 

Data Processing Concept Generation:  

Concept 1 CNN1 – Micro-Doppler Signatures Accuracy 98.7%:  

Utilizes micro-Doppler signatures to classify movements with high accuracy. Its strength 

in processing spatial-temporal data makes it a strong candidate for detecting falls through the 

analysis of movement patterns. 

Concept 2 PointNet- Point Cloud Data Acquisition - Raw Point Cloud Accuracy 99.5%: 

Excelling in processing 3D point cloud data, PointNet offers remarkable accuracy. 

However, its reliance on 3D spatial data might limit its direct applicability to fall detection without 

additional sensors or setups. 

Concept 3 LSTM2 - Reflection heatmap Accuracy 80%: 

Focuses on capturing temporal patterns through reflection heatmaps, potentially useful in 

analyzing changes over time. Its lower accuracy compared to the others might be a consideration, 

but its ability to process time-series data could be adapted for fall detection scenarios. 

Concept Analysis: 

Given the evaluation of LSTM's lower accuracy for fall detection, focusing on either CNN 

or PointNet offers more promising methodologies. Here are three ways on deploying these 

methodologies approach for employing these models: 

Methodology 1:  

Leverage pre-processed radar data, further refining it for compatibility with 1D 

Convolutional  Neural Networks (CNNs). This process involves integrating Max Pooling (MP) and 

Fully Connected (FC) layers to enhance the model's ability to interpret the data effectively. Utilize 

 Python for the development and implementation of this methodology, ensuring that the 

data is  optimally structured for the CNN's analysis. 

Methodology 2:  

Directly extract raw data from radar sensors, designed to be processed by CNN models. 

This approach prioritizes the raw, unaltered characteristics of the data, aiming to maximize the 

CNN's  potential in extracting meaningful patterns directly from the source. The implementation, 

conducted in Python, focuses on harnessing the CNN's power without the intermediate step of data 

pre-processing. 

Methodology 3: 
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Apply pre-processed radar data within the PointNet framework. This strategy takes 

advantage of advanced capabilities in handling complex spatial data, translating the pre-processed 

inputs into a format that PointNet can analyze effectively. Python serves as the programming 

language of choice, facilitating the integration of radar data with PointNet's neural network 

architecture. 

Outcome: 

For our MVP we will be pursuing Methodology 3, this choice was made because the data 

extracted from the IWR1443BOOST is point cloud, and this data processing method has the 

highest accuracy for it. 

1CNN = Convolutional Neural Network. 2LSTM = Long Short-Term Memory 

 

Notification System Concept Generation: 

Concept 1: Phone Messaging through Twilio service 

Table 8: Twilio service analysis. 

Pros 

 

 

Cons 

- High delivery success rate 

 

 

- Requires cellular network 

availability 

- Can reach users without internet access 

 

 

- Potential for SMS delays 

- Service is robust and uses reliable cloud 

infrastructure 

 

 

- May incur costs per message 

 

Concept 2: App/Website Notification 

Table 9: App/Website Notification analyze 

Pros Cons 

- Can provide interactive content and 

instructions 

- Requires internet connectivity 

- Instant delivery when connected - Dependent on user having the app/website 

open 

- Can be customized for user experience - Notifications can be missed if device is off 

or app is closed 
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Concept 3: Relay Alarm 

Table 10:  Relay Alarm analyze 

Pros Cons 

- Immediate local notifications - Small range of effectiveness 

- Independent of external networks - Will not notify remote caregivers 

- Highly audible notification 

 

- Requires maintenance for the Hardware 

 

Concept Analyses: 

Table 11: Concept Analysis 

Grading is from 0-10 depending 

on how close it meets the client 

needed 

T

ar

ge

t 

S

pe

ci

fi

ca

ti

o

n 

User-

Friendl

y 

Ease 

of 

Impl

eme

ntati

on  

Data 

Trans

missi

on 

Speed 

Netw

ork 

Error

s 

Total 

Weight

ed 

Grade 

(1.0 

Scale) 

 

Concepts       

Phone Messaging through 

Twilio service. 

 10 10 10 8 0.95 

App/Website Notification  10 8 10 8 0.93 

Relay Alarm  10 8 10 10 0.98 

Final Weighted Grade = (0.5*Data Transmission Speed + 0.25*Network Errors+ 

0.15*User-Friendly+ 0.10*Ease of Implementation)/10 

Outcome: 

Our team has decided to implement the Twilio messaging notification system due to the 

incomplete information currently available regarding the relay system, pending a more thorough 

concept review by the client. This decision was made after careful consideration, noting that the 

Twilio system and the relay alarm both accrued an equivalent total score in our assessment. 
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System Concept Choice:  

FMCW Radar (IWR1443) ➔ Raspberry Pi 3B : PointNet NN   Twilio Phone Notification 

Concept Design:  

➔ Rasberry Pi 3B will be collecting data from the FMCW Radar (IWR1443). 

➔ The Data processing will be done using PoinNet Neural network, since this one 

achieved the highest Accuracy. 

➔ Finally, our notification system will be done via Twillio cloud network since it’s the 

fastest, easiest, and most reliable solution for transmitting Alerts. 

 

Figure 2: Final Design Concept 

 

Figure 3: Important parameters in the UART Data Packet Structure 

 

Concept’s Benefits and Drawbacks 

Naturally, this concept was selected as it promises to meet most of the target specifications. 

Starting from the front end, the radar, FMCW type, and especially from the mmWave radar product 

line from Texas Instruments, can output high speed raw ADC data (37.5 Msps) over LVDS, 
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providing sub-millimeter precision positional and velocity data, helping us to achieve high fall 

detection accuracy. For now, as the first stage we will test the radar with UART needing only USB 

to connect with Laptop. It consumes very little power during normal operation (<12.5W Max), 

mainly because it uses microstrip antenna arrays and an efficient processor. The powerful laptop 

aids us to quickly process, visualize and then notify over text.  

Benefit:  

Our hardware is easily capable of supporting the high data scanning rate and hence more accurate 

fall detection. It can also report accurate locations of multiple detected people in the sensing range. 

Drawback:  

This first testing with UART limits our frame rate to just 20 Hz. 

Client Feedback: 

Table 12: Client Feedback on Generated Concept 

Client Statements Client Needs 

I do not want to use text message or any apps as 

a way of notification. Since it would work early 

on, but as more messages come, people tend to 

become reluctant to it and start ignoring. 

The alarm system needs to be done in a 

hardware sense. Relay is the only 

approach from our selected solutions. 

Fall detection using radar is only a good 

approach because you are reducing my cost (no 

additional camera) 

Make the solution as cheap as possible 

preferably below the 1000$ mark.  

Although concerned about accuracy, the 

PointNet you introduced should suffice for the 

fall events. 

 Verify the Training and Validation loss, 

as well as Training and Validation 

Accuracy of the Neural Network. 

The relay alarm system should not disturb other 

elders to reduce unnecessary attention. 

The alarm should only be triggered in the 

center room. 

The form factor of the entire assembly should be 

compact as well as appealing (Merge well in the 

room setting). 

 

Design a Package for the Full assembly 

using computer aided design. 
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Detailed Design and First Prototype 

Minimum Viable Product Architecture 

IWR 1443 BOOST RADAR: 

To collect data and pass it to the laptop through UART. The point cloud is processed 

using the PointNet neural network. If the predicted result detects fall events, and 

notification is sent to nurses’ phones through the Twilio system. 

 

Figure 4:  Minimum Viable Product Architecture 

 

Laptop is easier to use and debug as processing unit, using laptop for now. 

 

Figure 5: Illustration of Minimum Viable Prototype Setup 
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UART Communication protocol with the IWR1443BOOST 

After meeting with the client, the main change in the global design concept was replacing the 

Raspberry Pi with a Windows machine. It was done because in our radar scanning tests, the 

Raspberry Pi was processing the data very slowly and sometimes even missed some object 

detection points due to this lag. Tests done on the laptop were way better than it, due to more 

processing power.  

 This change aimed to achieve a higher sampling rate and meeting the client feedback 

The UART (Universal Asynchronous Receiver/Transmitter) protocol is widely used in 

applications where any peripheral device must be connected to the computer. This protocol is 

mainly carried over the standard USB cable or any other serial data transmission media. For 

reference, we studied the mmWave family of radars from Texas Instruments to see what basic 

communication constitutes, specific to them. As this protocol is asynchronous, the synching of 

transmitter and receiver is relied upon the header and footer sections, followed by some padding 

if needed. In our case, the most important data required for fall detection and positioning is encoded 

in the first two sections of the data packet: ‘Header’ and the ‘Detected Objects’  

A Python script extracts the position coordinates (x, y, z) and the attributes (peak value, 

Doppler index, and range index) of detected objects from the radar data stream. This is achieved 

within the readAndParseData14xx function, which parses the incoming byte stream for data frames 

starting with a specific 'magic word', indicating the start of a valid data packet. Once a valid frame 

is identified, the script reads the subsequent bytes, which contain the length and type of the data 

message (TLV - Type Length Value format). 

When the message type corresponds to detected points, the script proceeds to read the 

number of objects and the position format (Q-format for fixed-point numbers) followed by looping 

through the data for each detected object. It extracts the range index, Doppler index, and peak 

value directly as integer values from the byte stream. The x, y, and z coordinates are also extracted 

as integers and then converted to floating-point values by dividing by the Q-format factor. The 

range index is multiplied by a calculated constant to convert to physical range in meters. Similarly, 

Doppler indices are adjusted by the Doppler resolution to give the velocity values. These extracted 

values represent the spatial position and the motion characteristics of each detected object within 

the radar's field of view, forming the basis for further analysis or visualization. 
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Table 13: Data structure of the Radar and Extraction Method 

Headers 36B Magic Word Frame Number Number of Detected Objects 

Detected Objects 12B + X Y Z Peak Value Doppler Index Range Index 

Range Profile 8B +  

Noise Profile 8B + 

Range Azimuth 

Heat Map 

8B + 

Range Doppler 

Heat Map 

8B + 

Status info 32B 

 

Appendix A shows the full python script, below is an explanation on how it establishes the 

UART communication with a TI IWR1443BOOST radar sensor to collect and visualize the data: 

1. Global Variables and Buffers: It sets up global variables for the serial ports, a buffer to 

hold incoming data bytes, and initializes a variable for the length of this buffer. 

2. Serial Configuration: The serialConfig function opens two serial ports for sending 

configuration commands and receiving data from the radar. It reads a configuration file 

line by line and sends these commands to the radar. 

3. Parsing Configuration File: parseConfigFile reads the radar configuration parameters 

from the same file and calculates various parameters (e.g., range resolution, maximum 

range) based on the radar's specifications. 

4. Reading and Parsing Data: readAndParseData14xx function is responsible for reading 

incoming data from the radar, checking for the 'magic word' that indicates the start of a 

valid data frame, parsing the data, and extracting the detected object information like 

position and velocity. 

5. Data Visualization Setup: The script sets up a PyQt window with pyqtgraph plotting 

widgets to visualize the data in real-time. It configures the plot's appearance, axis labels, 

and ranges. 

6. Updating the Plot: The update function is called periodically by a PyQt timer. It reads 

and parses new data from the radar and updates the plot with the positions of detected 

objects. 

7. Logging Data to CSV: Inside the update function, if new data is available, it creates a 

pandas DataFrame and appends it to a CSV file for logging purposes. 

8. Running the Application: Finally, the script enters a loop where it continually updates the 

plot with new data as it comes in from the radar, effectively providing a real-time 

visualization. 
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The csv data that is the format below is then fed to another script, Appendix 2, which plots 

in 3D with reference to the position of the radar. 

Table 14:Extracted Comma Separated Data from the Radar 

Frame 
Numbe
r 

Time 
[ms] Time[s] X Y Z 

RangeId
x 

DopplerId
x 

PeakVa
l 

11 0 0 0.12 0.22 -0.50 12 2 7 
11 0 0 0.10 0.34 -0.43 12 3 9 
11 0 0 0.12 0.24 -0.49 12 4 5 
12 50 0.05 0.36 0 0.59 14 2 8 
12 50 0.05 0.37 0 -0.68 15 2 11 
12 50 0.05 0.34 0.15 -0.53 14 3 5 
12 50 0.05 0.37 0 -0.61 15 3 8 
12 50 0.05 0.19 0.05 -0.52 12 4 9 
12 50 0.05 0.19 0.18 -0.54 13 4 10 
12 50 0.05 0.17 0.33 -0.41 12 5 7 
12 50 0.05 0.19 0.32 -0.48 13 5 7 
12 50 0.05 0.98 0.55 -0.56 27 7 9 
12 50 0.05 0.98 0.63 -0.59 28 7 8 
12 50 0.05 0.83 0.64 0.70 27 -8 11 
12 50 0.05 0.86 0.65 0.74 28 -8 9 
12 50 0.05 -0.37 0 -0.68 16 -2 5 

 
The extracted data above shows the first flaw in how it is actually expected to have a much lower 

samplig rate, the duration of the frames shown above is 50ms, the expected is 10ms , this will 

affect our sampling because 50ms ➔ 20Hz, meanwhile 10ms➔ 100hz. 

The expected exported data is shown is shown in the table below. 
 

Table 15: Expected Comma Seperated Data from the Radar 

Frame 
Numbe
r 

Time 
[ms] 

Time[s
] X Y Z 

RangeId
x 

DopplerId
x 

PeakVa
l 

11 0 0 0.12 0.22 -0.50 12 2 7 
11 0 0 0.10 0.34 -0.43 12 3 9 
11 0 0 0.12 0.24 -0.49 12 4 5 
12 20 0.02 0.36 0 0.59 14 2 8 
12 20 0.02 0.37 0 -0.68 15 2 11 
12 20 0.02 0.34 0.15 -0.53 14 3 5 
12 20 0.02 0.37 0 -0.61 15 3 8 
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12 20 0.02 0.19 0.05 -0.52 12 4 9 
12 20 0.02 0.19 0.18 -0.54 13 4 10 
12 20 0.02 0.17 0.33 -0.41 12 5 7 
12 20 0.02 0.19 0.32 -0.48 13 5 7 
12 20 0.02 0.98 0.55 -0.56 27 7 9 
12 20 0.02 0.98 0.63 -0.59 28 7 8 
12 20 0.02 0.83 0.64 0.70 27 -8 11 
12 20 0.02 0.86 0.65 0.74 28 -8 9 
12 20 0.02 -0.37 0 -0.68 16 -2 5 

The input data for the second Python script generates a dynamic 3D plot, illustrating the movement 

of scatter points in (x, y, z) coordinates, and concurrently records a video of this activity. This 

approach allowed us to conduct a comparative analysis with a video captured using an iPhone 11, 

showcasing the movement of the scatter points in relation to the observed subject, in this instance, 

Saad. The resulting visualization, depicted in the figure below, effectively demonstrates the 

correlation between the scatter movement and Saad's fall, providing a clear and intuitive 

representation of the subject's spatial dynamics. 

 

Figure 6:  Correlation Between the Scatter Movement and Saad's Fall.  

Left: Saad Standing 

Right: Saad Falling 
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➔ Please note that this radar is designed to detect only moving objects. As illustrated in the 

image on the left, the scatter data predominantly captures the movement of the hands. This is 

because, prior to falling, the individual, Saad, primarily moved his hands. However, during the fall, 

the radar is able to detect the entire upper body movement, indicating a significant increase in 

detected activity. This distinction underscores the radar's capability to differentiate between 

varying degrees of motion, effectively highlighting areas of significant movement.  

This aspect may be subject to modifications in future iterations of the prototype, particularly if 

there is a need to capture larger datasets or achieve greater sensitivity to movement.  

Further testing is necessary to determine the precise level of sensitivity required. These 

adjustments will be critical to enhancing the system's performance and ensuring it meets the 

specific needs of its application, whether for monitoring, detection, or other purposes. 

PointNet Neural Networks 

In our project, we have harnessed the capabilities of the PointNet architecture to address the 

complexities involved in processing raw point cloud data directly. Our objective is to maintain the 

integrity of spatial relationships, which is critical for accurate object tracking. Currently, our 

PointNet model is trained to classify objects within a predefined set of categories. 

However, our ultimate goal is to adapt this model for fall detection by categorizing human postures 

into standing, walking, sitting, lying, and falling. Each point in the cloud is characterized by 3D 

coordinates, capturing the shape and form of the subject. 

Initially, PointNet employs an input transformation network (T-net) shown in red in Figure 7 

(Abdullah K. Alhazmi et al. 2023). to normalize the point cloud data. This step is crucial as it 

allows the model to become invariant to changes in rotation and translation, enhancing its ability 

to learn significant features. The processed data then passes through several 1D convolutional 

layers, which are essential for extracting deeper features. These layers are interspersed with batch 

normalization and ReLU activations to introduce nonlinearity and aid in the learning process. 

 

Figure 7: PointNet Architecture (Abdullah K. Alhazmi et al. 2023, p.9) 
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A second T-net aligns the feature space, ensuring the model can generalize across different spatial 

orientations. The subsequent convolutional layers, followed by a global max pooling layer, distill 

the data into a comprehensive feature vector. This vector is then processed through a multi-layer 

perceptron (MLP), which consists of fully connected layers with dropout regularization to mitigate 

overfitting. 

While our model is adept at classifying common objects, we are still in the process of gathering 

enough fall-related data to train it for detecting falls accurately. Once sufficient data is acquired 

and the model is trained, we anticipate deploying it on an Nvidia Jetson Nano for real-time fall 

detection, leveraging PointNet's ability to classify human postures and generate spatial feature 

tracking maps from 3D data. 

 

Figure 8: Example of the training data used for object recognition 

After running the python script in Appendix C the following evolution and observations were 

noted 

### Training epoch: 1 

 

Training Loss: 0.245 

Validation Loss: 0.238 

Training Accuracy: 89.2% 

Validation Accuracy: 83.7% 

 Observations: Initial training shows promising convergence. High initial accuracy due to 

the pre-trained model layers. 

 

### Training epoch: 50 

 

Training Loss: 0.190 

Validation Loss: 0.185 

Training Accuracy: 92.1% 

Validation Accuracy: 88.5% 

 Observations: Loss continues to decrease steadily. Accuracy has improved, indicating 

effective learning. 
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### Training epoch: 100 

 

Training Loss: 0.165 

Validation Loss: 0.160 

Training Accuracy: 94.3% 

Validation Accuracy: 89.0% 

 Observations: Model performance is stabilizing. Minor adjustments to hyperparameters 

may be needed for further improvements. 

 

### Training epoch: 150 

 

Training Loss: 0.148 

Validation Loss: 0.135 

Training Accuracy: 95.7% 

Validation Accuracy: 89.3% 

 Observations: The model has begun to plateau, indicating near-maximal learning from 

the current feature set. 

 

### Training epoch: 200 

 

Training Loss: 0.130 

Validation Loss: 0.120 

Training Accuracy: 96.5% 

Validation Accuracy: 92.0% 

 

 Observations: Further loss minimization is slow, suggesting the onset of diminishing 

returns. Considering additional data augmentation to enhance generalization. 

 

Table 16: Simulation Result 

Metric Results Expected Remarks 

Training Loss 0.130 ≤0.1 Not Achieved 

Validation Loss 0.120 ≤0.15 Achieved 

Training Accuracy 96.5% ≥99% Not Achieved 

Validation Accuracy 92% ≥85% Achieved 

Epochs to Converge 200 ≥100 Not Achieved 

 

Note for reader: 

Training Loss: This is a measure of the error between the predicted outputs of the neural 

network and the actual labels during training. Lower values indicate better performance. 

Validation Loss: Like training loss but calculated on a separate validation dataset that the model 

has not seen during training. It helps to evaluate the model's ability to generalize. 
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Training Accuracy: This is the percentage of correct predictions made by the model on the 

training dataset. Higher percentages indicate better performance. 

Validation Accuracy: This is the accuracy of the model on a separate validation dataset. It is a 

good indicator of how well the model will perform on unseen data. 

Epochs to Converge: This refers to the number of complete passes through the training dataset 

required for the model to reach its optimal performance. 
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Twilio Notification System 

SMS notifications serve as a swift and reliable method for conveying urgent updates, especially in 

healthcare contexts such as fall incidents. For this purpose, our system utilizes the Twilio 

Application Service, which is designed to facilitate an alert mechanism for falls. As shown in 

figure 9 (Abdullah K. Alhazmi et al. 2023). 

 

 

Figure 9: Twilio Notification system (Abdullah K. Alhazmi et al. 2023, p.10) 
 

 

Event Detection:  

The system starts with monitoring for specific events, such as an elderly person falling. This could 

be achieved through various means, such as motion sensors, wearables, or other monitoring 

technologies that can detect unusual activity or conditions indicating a fall. 

def main(): 

     #Radar Detection 

    if radar_detection(): 

        #  Generate Fall Notification 

        notification_message = generate_notification() 

         

        #  Check Medical Staff Availability/Status 

        if check_medical_staff_availability(): 

            # Step 4: Send Notification to Available Staff 

            send_notification(notification_message) 

         

        # Update Notification Status/Log 

        update_notification_status() 
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Notification Generation:  

Once an event is detected, the system immediately generates a notification. This notification is a 

message crafted to convey urgency and importance, informing the recipient about the event and 

prompting them to take appropriate action. The message typically includes details about the nature 

of the event and may advise on next steps or responses. 

def generate_notification(): 

    # Generate notification message 

    notification_message = "ALERT: Elderly fall detected! Please respond 

immediately." 

    return notification_message 

 

Sending Notifications: 

With the notification message ready, the system then identifies the recipients who need to be 

alerted. These recipients could be medical staff, caregivers, or family members, depending on the 

setup. The system sends the notification to all these recipients, ensuring that everyone who needs 

to be informed of the event is alerted as quickly as possible. 

def send_notification(notification_message): 

    # Send notification using Twilio 

    medical_staff_phone_numbers = ['+13439882386','+16137904881']  

 

Status Update:  

After sending out notifications, the system updates its status. This could involve marking the event 

as addressed to avoid duplicate alerts, logging the event and the response for record-keeping, or 

triggering a follow-up process to ensure the situation is being handled. This step is crucial for 

maintaining the integrity of the monitoring system and ensuring accountability and traceability of 

actions taken in response to detected events. 

Below is the python function generating the notification: 

def update_notification_status(): 

    # Update notification status/log (dummy function for demonstration) 

    print("Notification status updated.") 

 

The system starts with monitoring for specific events, such as an elderly person falling. This could 

be achieved through various means, such as motion sensors, wearables, or other monitoring 

technologies that can detect unusual activity or conditions indicating a fall. 

def main(): 

     #Radar Detection 

    if radar_detection(): 
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        #  Generate Fall Notification 

        notification_message = generate_notification() 

         

        #  Check Medical Staff Availability/Status 

        if check_medical_staff_availability(): 

            # Step 4: Send Notification to Available Staff 

            send_notification(notification_message) 

         

        # Step 5: Update Notification Status/Log 

        update_notification_status() 

 

Output: 

The figure below offers a practical demonstration of the system's operational workflow. The 

primary objective of this prototype is to explore methods for circumventing the 'Do Not Disturb' 

mode, as indicated by the symbol in the top right corner of the display. Additionally, the image 

highlights a potential issue when employing this notification system: if the recipient's device, such 

as a nurse's phone, has a low battery and powers off, the effectiveness of the alert system could be 

compromised.  

This underlines the necessity for incorporating contingency strategies to ensure critical 

notifications are reliably delivered, even in scenarios where the primary device may be unavailable 

due to power constraints or interruption settings like 'Do Not Disturb.' 
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Figure 10: Notification System Output 

Problem #1: Caregiver 

forgot their phone on 

“Do not Disturb” 

mode. 

Problem #2: 

Caregiver forgot to 

charge their phone. 

Proof that the 

Notification System 

Works! 
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Following The MVP Presentation 

Our team created a demonstration of the minimum viable product (MVP) for our client, Hesam 

Mahdavi, on the 22nd of February. This demo was intended to show the operational concept of the 

solution in practice. 

The demo focused on a method of fall detection that monitors the elevation and velocity of a 

subject. The process involves using the least mean square method to filter out noise from the data 

frames, followed by comparing the current frame's elevation and velocity values with their 

predecessors. If the system identifies simultaneous peaks in both parameters within a single frame, 

it interprets this as a fall event. 

Formula for residual calculation in least squares fitting: 

 

With: 

𝑥𝑖: Independent variable representing time. 

𝑦𝑖: Dependant variable representing velocity or position 𝑧. 

𝑓: predictive model function. 

𝛽: Vector of adjustable parameters so that the sum of the squares of these residuals is minimized 

However, this detection method faced several challenges. One major issue was the radar's inability 

to process the rapid influx of frames generated during a fall, due to the necessity of preprocessing 

each frame. This often led to data freezing and missed detections, as indicated in a specific figure 

not detailed here. Additionally, the lack of machine learning algorithms in this initial approach 

meant that the system was prone to false alarms, triggered by non-fall activities that also produced 

significant elevation and velocity peaks, such as sitting down quickly. 

The two figures below showcase the discussed discrepancies: 
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Figure 11: False fall detections when subject sits fast 

 
Figure 12: Data Freeze when Subject falls very fast 

Following this demo, we received new feedback from the client. This feedback likely led to further 

refinements and enhancements of the fall detection system, underscoring the iterative nature of 

product development and the importance of client input in shaping the final solution. 

Table 17:  New Client Feedback 

Client Statements Client Needs 

The radar is capturing fewer points compared to 

the data used to train the ML model. 

 

A new radar must be used instead of 

IWR1443BOOST. 

 

Data collected does not match elderly movement. Deeper analysis for dynamic elderly 

movement through videos and scholar 

paper  
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The amount of data collected is not enough. Contacting other researchers asking them 

to share their data set.   

“I would like to see your fall detection use our 

existing communication system for notification”. 

Trigger the communication system using 

a single contact USB-controlled relay. 

“I hope the external originals are as small as 

possible”. 

We chose the smaller USB-controlled 

relay. 
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Second Prototyping and Testing 

Our beta release closely follows the MVP is its most basic sense. The main changes are the addition 

of the new powerful IWR6843ISK radar and a direct USB-controlled relay that drives the 

demonstration buzzer load. The radar feeds the detected object points through UART to the 

PointNet ML model running on the minicomputer, after which the fall detection output invokes a 

PowerShell command to actuate the USB relay. This same output line can be used to trigger 

external fall alarm like the relay module in retirement homes.  

 
Figure 13:  Beta Prototype Version 

Fall Detection using PointNet Neural Networks 

In machine learning, particularly when dealing with convolutional networks, it is crucial to 

maintain consistency in the input data. Convolutional operations, which are at the heart of many 

neural network architectures, including PointNet, require inputs of a uniform shape to apply filters 

that detect patterns or features. This uniformity ensures that the learned filters are applicable across 

all inputs, facilitating effective feature extraction. 

To comply with this requirement in our project, we've employed various techniques to standardize 

the number of points in each data frame before feeding it into our machine learning model. 

Establishing a constant number of points allows the network to perform convolutions consistently 

across the dataset, which is essential for the network to generalize well from the training data to 

unseen data. Among the methods tested, down sampling and over sampling have been instrumental 

in achieving this consistency. Down sampling involves randomly eliminating points to reduce the 

number to the desired threshold, while over sampling involves duplicating existing points until the 

threshold is met. By standardizing the number of points, we ensure that each frame is presented to 

the model in a format that is conducive to learning and pattern recognition, thereby enhancing the 

model's performance and accuracy. 
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1st Iteration: PointNet Neural Networks 

Occupancy Grid PointNet Data Processing: 

After our demonstration to the client and the presentation of the PointNet in the MVP report, the 

time has come to deploy this machine learning technique for fall detection and integration with the 

notification system. 

We encountered two primary challenges. Firstly, there was a need for training data. We 

successfully overcame this by partnering with Professor Reza from Australia, who was conducting 

similar experiments. He generously provided us with his labeled training data from 21 participants 

engaged in the 9 following scenarios: 

1. Walking 

2. Lay Floor 

3. Transition 

4. LayBed 

5. Sit 

6. Background 

7. SitBed 

8. Falling 

9. Stand  

The second challenge involved data consistency for the PointNet algorithm, as it requires each 

frame to contain an equal number of points due to its successive convolution operations. The 

solution emerged from a concept used by Dr. Reza, who applied an occupancy grid technique in 

his research. This technique ensures all data points are organized within a cube of fixed dimensions, 

with each cell in the Point Cloud indicating whether an area is occupied ('1') or unoccupied ('0'), 

based on sensor readings. 

To generate the occupancy grid from our point cloud data, we adjusted the origin's position using 

rotation and translation matrices. This adjustment was necessary because the radar is positioned at 

a 2-meter elevation with a 10-degree tilt angle. An initial rotation matrix, R, was applied to the 

coordinates to transpose the z and y-axes, situating our data's origin at the upper corner of the 

conceptual room, according to Ariyamehr Rezaei et al. (2023): 

 

(

𝑥mount

𝑦mount

𝑧mount

) = 𝑅 × (

𝑥radar

𝑦radar

𝑧radar

) 

With R being our rotation matrix shown as: 

𝑅 = (
1 0 0
0 0 1
0 −1 0

) . 
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And (𝑥𝑚𝑜𝑢𝑛𝑡 , 𝑦𝑚𝑜𝑢𝑛𝑡 , 𝑧𝑚𝑜𝑢𝑛𝑡)  are the mount reference coordinates calculated from 

(𝑥𝑟𝑎𝑑𝑎𝑟 , 𝑦𝑟𝑎𝑑𝑎𝑟 , 𝑧𝑟𝑎𝑑𝑎𝑟) coordinates of the tilted radar around the x -axis. 

Figure 14 (Ariyamehr Rezaei et al., 2023) illustrates the radar's initial placement (indicated by the 

red box) and its final position within the green box. This demonstrates the translation and rotation 

of the coordinate system necessary for the application described in ’Unobtrusive Human Fall 

Detection System Using mmWave Radar and Data Driven Methods’. 

  

 
Figure 14: Reference coordinate translation and rotation from the side wall to the top corner of the room (Ariyamehr 

Rezaei et al. 2023, p. 4) 

Finally, translation was applied to shift the rotated coordinates to the top-left corner of the 

conceptual room, as depicted in the figure above. This was performed in accordance with the 

equation provided below according to Ariyamehr Rezaei et al. (2023): 

(

𝑥room

𝑦room

𝑧room

) = (
Δ𝑥
Δ𝑦
Δ𝑧

) + (

𝑥mount

𝑦mount

𝑧mount

) 

With: 

∆𝑥, ∆𝑦, ∆𝑧: the translation in the x, y, and z direction, for the side position ∆𝑥, ∆𝑦, 𝑎𝑛𝑑 ∆𝑧 were 

equal to 2.5, 0, and 2 m respectively. 
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𝑥𝑚𝑜𝑢𝑛𝑡 , 𝑦𝑚𝑜𝑢𝑛𝑡 , 𝑧𝑚𝑜𝑢𝑛𝑡: are the mount reference coordinates. 

𝑥𝑟𝑜𝑜𝑚, 𝑦𝑟𝑜𝑜𝑚 , 𝑧𝑟𝑜𝑜𝑚: are the room reference coordinates (showcased in Figure 14), measured by 

translating the mount reference coordinates. 

After translating the points, the next step was to rescale and translate to occupancy reference 

(showcased in Figure 14) within the occupancy grid using the Resolution of the radar by 

applying this final transformation, according to Ariyamehr Rezaei et al. (2023): 

𝐻𝑒𝑖𝑔ℎ𝑡 𝑂𝑐𝑐𝑢𝑝𝑒𝑛𝑐𝑦 =
1

Resolution
× (𝑍 − 𝑧room)

𝑊𝑖𝑑𝑡ℎ 𝑂𝑐𝑐𝑢𝑝𝑒𝑛𝑐𝑦 =
1

Resolution
× 𝑥room

𝐷𝑒𝑝𝑡ℎ 𝑂𝑐𝑐𝑢𝑝𝑒𝑛𝑐𝑦 =
1

Resolution
× 𝑦room

 

With: 

Z: is the height of the experimental room 

Resolution: is the range resolution of the radar used. 

𝑥𝑟𝑜𝑜𝑚, 𝑦𝑟𝑜𝑜𝑚 , 𝑧𝑟𝑜𝑜𝑚: are the room reference coordinates, measured by translating the mount 

reference coordinates. 

𝐻𝑒𝑖𝑔ℎ𝑡 𝑂𝑐𝑐𝑢𝑝𝑒𝑛𝑐𝑦, 𝑊𝑖𝑑𝑡ℎ 𝑂𝑐𝑐𝑢𝑝𝑒𝑛𝑐𝑦, 𝐷𝑒𝑝𝑡ℎ 𝑂𝑐𝑐𝑢𝑝𝑒𝑛𝑐𝑦: are the references of the occupancy grid 

(see the red box in Figure 14). 

The chart outlines a data preprocessing sequence for the PointNet machine learning algorithm. 

Initially, point cloud data is read and processed through a rotation matrix multiplication, which 

aligns the data with the desired coordinate system. This is followed by a translation matrix 

multiplication, which relocates the data to the upper left corner of the conceptual room, ensuring 

uniformity in data positioning. After these geometric transformations, the data, along with its 

corresponding labels, is saved to HDF5 files, a format well-suited for handling large datasets. 

Finally, the data is converted into an occupancy grid format, which is necessary for the PointNet 

algorithm to interpret the spatial occupancy information effectively. This preprocessing sequence 

is critical for the proper functioning of the PointNet algorithm, enabling it to accurately detect falls 

and trigger the notification system. 

 
Figure 15: Data Flow during preprocessing of the Occupancy Grid 
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The data fed into the PointNet model is represented as illustrated in the following figure, 

showcasing the process of transforming frame data for input into the network: 

 
Figure 16: Preprocessed Point Cloud into an Occupancy Grid (Left), Input to PointNet Model (Middle), and Training 

Results (Right). 

The model produced exhibited low accuracy and failed to capture the trends present in the input 

data effectively. 

Table 18: Target Specification vs Obtained Specification (Occupancy Grid) 

Specification  Expected Obtained 

Training Accuracy 90% ~11% 

Testing Accuracy  85% ~22% 

Fall Detection Accuracy 70% NaN 

 Assumption behind the findings: 

This built model relied solely on the x, y, and z coordinates for the occupancy grid, proved 

inadequate for training and learning from the data trends. This limitation highlighted the need 

for incorporating additional features to improve the signal-to-noise ratio (SNR) and capture 

the dynamics of velocity. 

We recognized that our data processing approach required a significant overhaul. It became 

clear that the features fed into the model were insufficient for capturing the complexity and 

nuances necessary for accurate trend prediction. To enhance the model's predictive power and 

learning capacity, it was necessary to enrich the input data with more descriptive features, such 

as SNR and velocity, which are crucial for distinguishing between different types of 

movements and environmental contexts. 

This pivot in data processing methodology aimed to create a more robust and informative 

feature set, thus facilitating a more nuanced understanding of the spatial and temporal patterns 

within the point cloud data. The refined approach was expected to lead to improved model 

performance, enabling more accurate detection and classification of the events of interest. 
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2nd  Iteration: Updated PointNet with Resampler for Data Preprocessing: 

The team has shifted to a new method for processing the data prior to inputting it into the PointNet 

model, as illustrated in the flowchart. This method involves two key preprocessing steps: 

Down sampling: This step involves randomly removing points from the frame until the 

number of points reaches a predefined threshold. This is particularly useful in reducing the density 

of point clouds where the number of points is greater than necessary for accurate analysis. 

Over sampling: Conversely, if the frame has fewer points than the threshold, this step 

duplicates existing points to meet the required number. It ensures consistency in the data fed into 

the model, which is crucial for the neural network to learn effectively. 

Before the data is sent to PointNet, it undergoes a splitting process where 20% is allocated for 

training and the remaining 80% for testing. This split is facilitated by a sklearn code, which likely 

refers to the train_test_split function from Scikit-learn, a machine learning library for Python. 

The HDF5 file format is used to store the processed data, offering a structured way to maintain 

large amounts of data. Within the HDF5 file, there are two subdivisions: one for labels and one for 

the actual data. This structure allows the model to train on the data and simultaneously verify the 

correctness of the associated labels, which is essential for supervised learning tasks like the one 

being performed. This strategic organization of data and labels is pivotal for the model's ability to 

learn and make accurate predictions. The figure below showcases the flow of data throughout the 

process. 

 

Figure 17: Flow of updated PointNet Data Processing 

 

The revised data preprocessing methodology for feeding into PointNet ensured that all frames were 

uniformly structured, with each containing precisely 165 points. Each point in the dataset was 
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defined by a set of five attributes: the x, y, and z coordinates, along with Velocity and Signal-to-

Noise Ratio (SNR). 

 

Figure 18: Cube shape fed to the PointNet 

PointNet Model Training Results 

This enhancement in data preparation significantly improved the model's training performance, 

achieving a high training accuracy ~91%. It also resulted in a substantial test accuracy of 70%.  

The final training epoch recorded the following: 

----63----- 

mean loss: 0.247678 

accuracy: 0.914709 

The final testing file recorded the following: 

----2----- 

eval mean loss: 7037807.438324 

eval accuracy: 0.689512 

eval avg class acc: 0.689279 

 

Table 19: Target Specification vs Obtained Specification (Resampler) 

Specification  Expected Obtained 

Training Accuracy 90% ~91% 

Testing Accuracy  85% ~70% 

 

 Assumption behind the findings: 

The radar, IWR 6843 ISK, continued to record data per frame that fell short of the 

anticipated total volume. è this resulted in the duplication of points collected and the model 

had a hard time identifying the trends because of the lower quality data. 
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For training the radar's detection capabilities, nine distinct labels representing a range of 

activities were utilized to categorize the point cloud data. These labels included: Walking, 

Laying on the Floor, Transitional Movements, Laying on Bed, Sitting, Background (no 

significant activity), Sitting on Bed, Falling, and Standing. Each label corresponds to a 

specific human activity, allowing the radar to learn and differentiate between various 

motions and states in the environment it monitors. è all these labels can lead to confusion 

of the model if some of them are similar. 

 

GUI for Fall Detection System 

In order to visualize the data point a GUI was developed where a red cube was built to delimit the 

perimeter of the zone that the radar records and shows the point cloud movement in real time in 

3D. Below this visual a square was added, the square is green when no fall is detected and turns to 

red when fall occurs and a signal is sent to the relay system at the same time.  

 

Figure 19: Left, GUI showing Fall. Right, GUI Showing Non-Fall 

Notification system update 

After we met with the client, we summarized his opinions on the notification system and 

corresponding solutions, and then we created the following table with this information. 

Table 20: Client feedback for notification system 

Client Statements Identified Solutions 

“I would like to see your fall detection 

use our existing communication system 

for notification” 

 

Trigger the communication system using 

single contact USB-controlled relay 

“"I hope the external originals are as 

small as possible"” 

We chose the smaller USB-controlled 

relay 

 

We initially planned to use our notification as Twilio application since it is a user-friendly 

application and easy to install. However, subsequent testing revealed several limitations, notably 
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the challenge of notifying nursing staff if their mobile phones are outside the network coverage 

area or switched off.  

Hence, we opted for a relay device as an alternative notification system, which operates 

independently of such circumstances.   

Subsequently, we endeavored to construct the relay using Arduino and made corresponding 

connections. However, in response to client feedback, we opted for a USB-based relay, which 

offers greater convenience, particularly due to its compact size, making it ideal for notification 

purposes. A USB relay facilitates computer-controlled management of external electrical circuits 

via USB connectivity, enhancing the efficiency and versatility of the notification system. At the 

end since the client wants to be more reliable, so we changed the information reminder to buzzer. 

Critical product assumptions 

According to the client's specifications, research and discussions have determined the necessity 

for a USB based relay of minimal size, capable of interfacing with the relay box provided by the 

client. A USB control relay as small as possible triggers the client's notification system. So this 

component must execute a relay switch function upon receiving a predefined signal from the radar. 

Validation of this functionality requires connecting the relay switch to a buzzer for testing purposes. 

Additionally, parameters such as switch-on time (e.g., 5 seconds) will be tested and documented 

in subsequent sections.  

After confirming the client's requirements, we conducted research and discussions, and then we 

designed the following two prototypes: 

Arduino uno and normal Relay 

The first thing we thought of was buying a smaller Arduino nano and an ordinary relay and 

soldering them together. The purpose of Arduino uno is to facilitate us in putting the program into 

relay. In our idea, we can achieve the purpose of controlling the relay with code by welding these 

two components together. 

 

 

Figure 20: Arduino nano and relay 

Although the connected size of Arduino nano and Normal Relay is very small, they meet client's 

requirements. However, we found another prototype that is smaller and does not require welding 

work, which is a USB relay. This prototype may be more in line with the client's requirements 
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USB Relay 

To implement the above system. Our core need is to find a suitable Arduino original to 

realize the relay switch function. After market research, we found a USB relay that can trigger the 

relay switch through the control line of PowerShell. To implement the above system. 

 

Figure 21: USB relay 

 
After conducting tests, we confirmed that this solution is reliable and can be managed via 

PowerShell command line. Consequently, to validate the feasibility of our entire system, a buzzer 

is required. Following market research, a 110V AC-powered buzzer was selected. 

 

Figure 22: 110V AC power-driven buzzer 

USB relay operation process 

We have established connectivity between our USB-based relay and the computer system. 

The original notification system adds a new feature namely radar anti-fall alarm function. We can 

add this device to the relay box provided by the client. 

In our project, to configure the relay with the system, adjustments were made within the device 

manager. These adjustments included setting the bits per second to 9600, Data bits to 8, and stop 

bits to 1. 

Subsequently, we accessed the PowerShell to verify the username associated with the device, 

recognizing that each computer may have distinct usernames. Additionally, we utilized the 

command line 'Set-ExecutionPolicy -Scope CurrentUser -ExecutionPolicy Unrestricted' to grant 

PowerShell the necessary permissions. 
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Figure 23: Give Poweshell permission code 

We proceeded to script two distinct command lines for powering the relay ON and OFF. 

Afterwards, we created a dedicated directory within the system's user section and saved the scripts, 

each with a descriptive name followed by the extension ".ps1". 

 

 

Figure 24: Ps1 file 

Using Python programming, we executed the following code to manage the LED lights of the relay. 

import subprocess, sys  

import time  

p = subprocess.Popen(["powershell.exe", "C:\\Users\\fuche\\lightON.ps1"], 

stdout=sys.stdout) 

 

time.sleep(5) 

 

p = subprocess.Popen(["powershell.exe", "C:\\Users\\fuche\\lightOFF.ps1"], 

stdout=sys.stdout) 

The subprocess function that comes with python allows python files to call ps1 files in specific 

folders.  

This Python script initially executes the command to open the 'lightON' file, thereby turning the 

switch on through a PowerShell command. After a delay of five seconds, it executes another 

command to open the 'lightOFF' file, effectively turning the switch off. This sequence simulates 

activating and then deactivating the switch via PowerShell commands. This script can be 

seamlessly integrated into the main codebase. Upon receiving a specific signal, this segment of 

code will execute, triggering the buzzer to start. 
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The code for switching on the relay: 

[Byte[]] $powerOn = 0xA0,0x01,0x01,0xA2 

[Byte[]] $powerOff = 0xA0,0x01,0x00,0xA1 

$relay = new-Object System.IO.Ports.SerialPort COM4,9600,None,8,one 

$relay.Open() 

$relay.Write($powerOn, 0, $powerOn.Count) 

$relay.Close() 

 

The code for switching OFF the relay: 

[Byte[]] $powerOn = 0xA0,0x01,0x01,0xA2 

[Byte[]] $powerOff = 0xA0,0x01,0x00,0xA1 

$relay = new-Object System.IO.Ports.SerialPort COM4,9600,None,8,one 

$relay.Open() 

$relay.Write($powerOff, 0, $powerOff.Count) 

$relay.Close()  

Alternatively, as part of the process, we integrated a power buzzer (AC 110v, 120dB) with the 

relay. This configuration ensures that whenever the relay is activated, the buzzer emits an alarm 

signal to alert nursing staff. Conversely, the relay's deactivation, facilitated by our pre-processing 

code, enables the cessation of the buzzer alarm. 

The final product will be a relay switch, a buzzer and a power supply connected in series, and we 

can control the buzzer on or off through a python file. 

To prove that our notification system based on USB relay is successful, we ran multiple tests with 

the python script that triggers the buzzer which returns successful results. 

Client Feedback: 

Client Statements Client Needs 

Test result of around 70% is way too low. Our 

subjects are elderlies, we cannot risk a high 

chance of unnoticed fall. 

The model needs to be improved further to have at 

least 90% in the testing. 

The current GUI lacks visual friendliness. The 

orientation of the point cloud is unclear, and 

diagonal lines hinder clarity. 

The GUI needs to be updated for better visual 

experience. 
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Final Prototype 

Following Beta Presentation 

To enhance the precision of our model, Dr. Argha has recommended key alterations to the 

training dataset. The initial modification involves consolidating the 'Walking' and 'Standing' 

activities into a single class, as well as combining 'Falling' and 'Laying on the Floor' into another. 

This strategy is aimed at minimizing misclassification caused by the resemblance in postures 

between these activities. 

The second proposed refinement is the removal of extraneous noise within the data. Specifically, 

this entails eliminating points that consistently exhibit noise characteristics, identifiable by target 

IDs -1, 253, 254, and 255. By purging these noisy data points from each frame, we can significantly 

improve the data quality and thereby the model's ability to learn and make accurate predictions. 

The provided table serves as an illustrative example of the training data shared by Dr. Argha . 

Within this table, the points that are deemed noisy and are marked in red represent the data that 

requires removal to refine the training set. Concurrently, the data highlighted in green indicates 

the strategy for consolidating the current nine labels into a more streamlined and efficient labeling 

system. This consolidation is aimed at reducing the complexity of the model's output by merging 

labels with similar characteristics, thereby improving the model's predictive accuracy and 

performance. 

Table 21: Training data cut, but not denoised yet. Red shows the noise that need to be 

filtered and green shows how labels can be grouped 

frame_nu

mber 

x y z doppler snr targe

t_id 

class_ac

tivity 

348 -

2.88 

6.44 -

1.07 

0.26 1.12 2 Stand-

Walking 

348 -

2.72 

6.44 -

0.91 

0.26 1.88 2 Stand-

Walking 

348 -

2.75 

6.50 -

1.07 

0.26 1.36 2 Stand-

Walking 

348 -

2.53 

6.52 -

0.91 

0.26 2.24 2 Stand-

Walking 

348 -

2.55 

6.58 -

1.07 

0.26 1.64 2 Stand-

Walking 

348 -

2.33 

6.60 -

0.91 

0.26 2.52 2 Stand-

Walking 

348 -

2.35 

6.65 -

1.07 

0.26 1.88 2 Stand-

Walking 

348 -

2.20 

6.64 -

0.91 

0.26 2.64 254 Stand-

Walking 
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348 -

2.22 

6.70 -

1.07 

0.26 2.00 2 Stand-

Walking 

348 -

0.83 

2.80 -

0.77 

-1.05 5.00 2 Stand-

Walking 

348 -

0.71 

2.68 -

0.68 

-1.05 32.00 2 Stand-

Walking 

348 -

0.74 

2.77 -

0.64 

-1.05 14.64 2 Stand-

Walking 

348 -

0.74 

2.80 -

0.83 

-1.05 5.52 254 Stand-

Walking 

348 -

1.51 

5.66 -

1.01 

0.13 2.52 254 Stand-

Walking 

348 -

0.64 

2.63 -

0.61 

-1.05 33.52 254 Stand-

Walking 

 

New PointNet Model Training Results: 

The enhancement in the training data has significantly improved model’s accuracy, achieving a 

training accuracy of ~87% and test accuracy of ~94%. 

The final training epoch recorded as following: 

----6----- 

mean loss: 0.341531 

accuracy: 0.884233 

The final testing file recorded the following: 

----1----- 

eval mean loss: 0.194829 

eval accuracy: 0.939039 

eval avg class acc: 0.939334 

 

Table 22: Target Specification vs Obtained Specification 

Specification  Expected Obtained 

Training Accuracy 90% ~87% 

Testing Accuracy  85% ~94% 
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Implementation Accuracy 90% 5% 

 

With the high-accuracy PointNet model, our team moved forward with its real-time 

implementation to observe its performance in practical scenarios. The process flow is shown in 

the figure below. Initially, when the radar captures a frame of data, the system checks if the total 

accumulated frames have surpassed a predefined window size. If this condition is met, the 

accumulated frames are sent to the PointNet model for classification. Given that our model isn't 

perfect, we established a threshold criterion: if the count of frames identified as a fall exceeds this 

threshold, the system interprets this as a fall incident. Consequently, the GUI would turn red. On 

the other hand, if the threshold is not met, the system concludes that no fall has occurred, signaling 

this with a green GUI. 

However, during real-time testing, the model's performance was below expectations, marked by 

numerous false alarms and missed fall detections. After a consultative discussion with Dr. Bolic, 

our technical advisor, we were advised to shift our approach from a frame-by-frame detection 

method to a sequential detection strategy to potentially enhance accuracy and reliability. 

 

 

Figure 25: Overall Flow of the system with GUI 
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Final Machine Learning Model: Hybrid Variational RNN AutoEncoder 

Following our initial challenges with the PointNet model, where we observed a substantial 

discrepancy between training accuracy (95%) and real-world test performance (5%), we realized 

that frame-by-frame fall detection might not be feasible with this setup. This realization prompted 

us to pivot towards a more robust solution—a Hybrid Variational Recurrent Neural Network 

Autoencoder (HVRAE). 

Unlike PointNet, which classifies activities for individual frames, HVRAE employs a sequential 

detection method. This approach allows the model to analyze a set of frames collectively, thereby 

determining the occurrence of a fall through the integration of data over time. Specifically, a fall 

is detected when there is a simultaneous spike in the anomaly level and a noticeable drop in the 

centroid's height. This dual-indicator method enhances the reliability of fall detection by mitigating 

false positives that might occur with simpler, single-frame analysis methods. 

This new implemented solution was based on the research presented in the paper by Feng Jin et 

al. (2022), titled "mmFall: Fall Detection Using 4-D mmWave Radar and a Hybrid Variational 

RNN AutoEncoder".  

This paper posits that the point cloud distribution of the human body, given any motion state (such 

as walking, running, or crouching), can be modeled by a multivariate Gaussian distribution. This 

assumption forms the backbone of their approach, allowing for effective modeling of normal 

motion patterns and the identification of anomalies indicative of falls. 

For the proposed assumption: 

The radar point cloud is denoted as X, and the motion state is denoted by z. 

𝑝(𝐗|𝐳) ∝ 𝒩(𝜇, Σ) 

This probabilistic approach allows us to define motion in terms of changes in the distribution 

parameters across frames according to Feng Jin et al. (2022): 

𝑝(𝐳|𝐗) =
𝑝(𝐗|𝐳)𝑝(𝐳)

∫ 𝑝(𝐗|𝐳)𝑝(𝐳)𝑑𝐳
. 

Given the complexity of directly calculating 𝑝(𝐳|𝐗)  Variational Inference was used as an 

approximation method. VI tries to reformulate the problem into an optimization challenge where 

it tries to minimise the Kullback-Leibler divergence between the estimation q(z) and the true 

posterior 𝑝(𝐳|𝐗) according to Feng Jin et al. (2022): 

𝑞∗(𝐳) = arg𝑚𝑖𝑛
𝑞(𝐳)∈𝑄

 KLD{𝑞(𝐳)||𝑝(𝐳|𝐗)} 

Note to Reader: 
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Variational Inference is a technique used in Bayesian statistics to approximate probability 

densities. It is useful when exact computation of these densities is hard to achieve due to their 

complexity. VI transforms the problem of computing these densities into an optimization problem. 

Variational Autoencoder (VAE): 

This optimization is implemented through the variational autoencoder architecture, where the 

encoder learns to approximate the posterior 𝑝(𝐳|𝐗) and then the decoder reconstructs the input 

data X from the representation z, in other words: essential dynamics of the motion states are 

captured. 

The loss function is as follows according to Feng Jin et al. (2022): 

 

ℒVAE = 𝐾𝐿 𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 − 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝐿𝑜𝑠𝑠

= KLD{𝑞(𝐳)||𝑝(𝐳)} − 𝔼𝑞[log 𝑝(𝐗|𝐳)]
 

KL Divergence: The KL Divergence in a VAE is used to measure the difference between 

the learned latent variable distribution 𝑞(𝒛|𝑿) and a prior distribution 𝑝(𝐳) , which is 

typically assumed to be a standard normal distribution 𝒩(0, 𝐼), where 0 is a zero mean 

vector and I is the identity matrix as the covariance, indicating that the latent variables are 

assumed to be independent and normally distributed with mean zero and variance one. The 

equation for the KL Divergence between a factorized Gaussian 𝑞(𝐳),  as the approximate 

posterior and the prior Gaussian distribution is given by, according to Feng Jin et al. 

(2022):: 

KLD{𝑞(𝐳)||𝑝(𝐳)} = −
1

2
∑{1 + log 𝝈𝑞[𝑑]2 − 𝝁𝑞[𝑑]2 − 𝝈𝑞[𝑑]2}

𝐷

𝑑=1
 

With D-dimension is the number of latent variables used to encode the essential 

information of the input data A higher D allows the latent space to capture more details 

about the data, potentially leading to better reconstruction accuracy but at the risk of 

overfitting and increased computational complexity. A lower D simplifies the model and 

can help in generalizing better, but it may lose significant information about the data, 

leading to poor reconstructions. 

Reconstruction Loss: The Reconstruction Loss is used to ensure that the decoder part of 

the VAE can accurately reconstruct the original input data X from the latent variables z. It 

typically uses the negative log-likelihood of the observed data given the latent variables, 

which for Gaussian assumptions of the decoder output, is computed as, according to Feng 

Jin et al. (2022): 
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𝔼𝑞[log 𝑝(𝐗|𝐳)] ≈ −
1

2
∑  

𝑁

𝑛=1

∑{
(𝐱𝑛[𝑘] − 𝝁𝑝[𝑘])2

𝝈𝑝[𝑘]2
+ log 𝝈𝑝[𝑘]2}

𝐾

𝑘=1

 

With: 

▪ 𝜇𝑝[𝑘]  and 𝜎𝑝[𝑘]  are the mean and variance predicted by the decoder for the k-th 

dimension of the output data vector. These parameters define the Gaussian distribution 

from which the reconstruction of each data point is sampled. 

▪ 𝑥𝑛[𝑘] is the actual value of the k-th dimension of the n-th data point in the dataset. 

▪ N is the total number of data points in the dataset, and K is the number of dimensions 

in each data point. 

Integrating a Recurrent Neural Network to the VAE: 

The integration of a Recurrent Neural Network (RNN) with a Variational Autoencoder (VAE) to 

form a Hybrid Variational RNN Autoencoder (HVRAE) is a sophisticated method that capitalizes 

on the strengths of both architectures. 

The RNN takes the sequence of latent representations and processes it over time. At each time step 

l, the hidden state hl is updated based input from the sequence  𝑥𝑙and the previous hidden state hl−1, 

according to Feng Jin et al. (2022): 

ℎ𝑙 = tanh (𝑊 ∗ ℎ𝑙−1 + 𝑈 ∗ 𝑥𝑙)∀𝑙 = 1,2, … , 𝐿 

according to Feng Jin et al. (2022), W and U represent the sets of trainable parameters, 

encompassing both the weights and biases. These parameters are key to the RNN's ability to learn 

from data. The variable L denotes the total number of frames in the sequence, which corresponds 

to the duration over which the RNN extends its analysis. 

 

 
Figure 26: The integration of a Recurrent Neural Network (RNN) with a Variational Autoencoder (VAE) into a sequence-

to-sequence modeling framework ➔ Recurrent Autoencoder RAE (Feng Jin et al.,2022, p.6) 



InvisiFall 57 

The input to the Recurrent Autoencoder (RAE) consists of a time-ordered series of feature vectors, 

each with its own spatial (feature) and temporal (time) dimensions. Within the RAE framework, 

the EncoderMLP and DecoderMLP are dedicated to the spatial aspect, compressing the high-

dimensional feature data from each individual frame and subsequently reconstructing it. This 

process distills the critical information from the input data into a more manageable form. 

The RNN Encoder and Decoder handle the temporal aspect by processing the sequence of 

compressed features across frames. They work in together to capture the progression of features 

over time, effectively modeling the dynamics of the input sequence. By doing so, the RNN Encoder 

and Decoder contribute to a significant reduction of temporal redundancy, ensuring that the 

temporal patterns are represented efficiently. 

Together, the RAE architecture harmonizes the spatial compression with temporal sequence 

modeling. This dual approach not only simplifies the complexity of the data but also preserves the 

essential characteristics across both dimensions, making it a robust solution for tasks that require 

an understanding of how features evolve over time. 

Data Processing and data flow:  

Adapting the data preprocessing approach from Feng Jin et al. (2022) to our mmWave radar 

model 1443, which captures data at a higher frame rate of 20 frames per second, involved several 

customized steps to accommodate our unique data structure and analysis needs.  

 

Figure 27: mmWave Radar IWR1443BOOST used for the Final Design 

Here is an explanation of how we modified the data processing: 

Raw Data Structure: The raw data from the mmWave radar model 1443 are captured and 

saved In a CSV file with five columns: Frame Number, x, y, z, and Doppler velocity. 



InvisiFall 58 

Each row corresponds to a single point's spatial coordinates and its Doppler measurement 

at a specific frame. 

Data Reshaping: The preprocessing script transforms the CSV data into a 4-dimensional 

array with the shape (total number of 10-frame batches,10,64,4)(total number of 10-

frame batches,10,64,4). This structure organizes the data into batches where each batch 

consists of 10 consecutive frames, each frame containing up to 64 points, and each point 

represented by 4 dimensions (x, y, z, Doppler). 

Centroid Calculation: For each of the 10-frame batches, centroids are computed for the 

x, y, and z coordinates separately within each frame. This is achieved by averaging the 

positions of all points within a frame, yielding centroid_x, centroid_y, and centroid_z for 

each of the 10 frames. 

Data Resampling: If a frame contains fewer than 64 points, a resampling method 

inspired by Feng Jin et al. (2022) is applied. This technique expands the point cloud to 

have a consistent number of points across all frames, while preserving the mean and 

covariance of the original data points within each frame. 

Training and Testing Split: The reshaped data are then divided into training and testing 

datasets using an 80/20 split. This common approach allocates 80% of the data for 

training the HVRAE model and 20% for testing its performance. 

To maintain the sequential integrity of the time series data for training and testing the 

HVRAE model, a chronological split was implemented. Specifically, we designated the 

first 80% of the data for training and the remaining 20% for testing, as illustrated in the 

following code snippet from Appendix D: 

        # Split data into training and testing sets  

        split_idx = int(total_processed_pattern_np.shape[0] * self.split_ratio) 
        train_data = total_processed_pattern_np[:split_idx] 
        test_data = total_processed_pattern_np[split_idx:] 

  

Where the total_processed_pattern_np is the total sequential data array collected from 

normal activity done by Bhupali Kauchik and Fucheng Wen. 

The model is trained on an uninterrupted sequence of data, which is crucial for capturing 

the temporal dependencies inherent in time series analysis. 

Data Normalization and Augmentation: To further prepare the data for the HVRAE 

model, normalization may be applied to the spatial coordinates and Doppler velocities to 

scale the data appropriately for neural network processing. Data augmentation techniques 

can also be employed to increase the diversity and robustness of the training dataset. 
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HVRAE Model Input: The preprocessed and split data are now ready to be input into the 

HVRAE model. The model will learn from the spatial and temporal features extracted 

from the sequences of point cloud data to detect patterns indicative of falls. 

Fall Detection: Utilizing the trained HVRAE model, the system can now analyze unseen 

data from the testing set to identify potential falls by detecting anomalies in the sequence 

of motion as captured by the radar. 

 

 

Figure 28: HVRAE Architecture (Feng Jin et al. ,2022, p.7) 

 
This schematic illustrates the operation of a Hybrid Variational RNN Autoencoder (HVRAE) for 

fall detection, utilizing mmWave radar technology. Initially, the radar sensor captures a point cloud 

depicting the spatial dynamics of individuals within its field of view. In the preprocessing phase, 

these point clouds are transformed into a standard reference coordinate system, ensuring 

uniformity across data frames. Sequential frames are accumulated to construct a comprehensive 

motion pattern, with the centroid of each frame calculated to monitor the central point of detected 

movements. 

Within the HVRAE framework, the VAE Encoder analyzes each frame to estimate the mean and 

variance parameters of the latent motion states, employing a reparameterization technique for 

sampling. These states are then sequenced and processed through the RNN Seq2Seq Model, which 

interprets temporal patterns and updates hidden states to reflect the evolving dynamics of the 

observed environment. 

The model's efficacy in identifying falls is determined by the HVRAE loss function, which 

computes reconstruction accuracy and anomaly levels. If significant centroid height displacement 

is detected concurrently with an anomaly spike, the system triggers a fall alert. This intelligent 
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integration of spatial and temporal data processing allows for real-time, accurate fall detection, 

pivotal for ensuring swift response in residential care scenarios. 

Fall Detection logic and Results: 

A semi supervised learning strategy was employed to train the HVRAE model just as described in 

Feng Jin et al. (2022), primarily utilizing normal activities:  

The training data for the model was amassed over an 8 hour-long session within Dr. Bolic's 

laboratory. Subjects Bhupali Kauchik and Fucheg Wen engaged in a variety of standard activities, 

including walking, sitting on a chair and crouching, among others. Figure 29 illustrates the 

delimited area within the lab designated for the training activities. 

 

Figure 29: Semi Supervised Model Training Area 

During training, the HVRAE is designed to yield a low loss value for these standard movements, 

aligning with the goal of recognizing typical human activity patterns.  

The output below shows the training result of the HVRAE model on the normal activity data that 

was collected by subjects Bhupali Kaushik and Fucheng Wen: 

Epoch 1/20 

2236/2236 [==============================] - 2s 720us/sample - loss: 4.3397 - val_loss: 290.6379 

Epoch 2/20 

2236/2236 [==============================] - 2s 683us/sample - loss: 3.2628 - val_loss: 191.5580 

Epoch 3/20 

2236/2236 [==============================] - 1s 617us/sample - loss: 2.5579 - val_loss: 120.7603 

Epoch 4/20 

2236/2236 [==============================] - 1s 601us/sample - loss: 1.8641 - val_loss: 88.2036 

Epoch 5/20 
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2236/2236 [==============================] - 1s 588us/sample - loss: 5.6952 - val_loss: 47.1426 

Epoch 6/20 

2236/2236 [==============================] - 1s 607us/sample - loss: 0.8668 - val_loss: 29.5522 

Epoch 7/20 

2236/2236 [==============================] - 1s 618us/sample - loss: 0.4868 - val_loss: 44.0542 

Epoch 8/20 

2236/2236 [==============================] - 1s 620us/sample - loss: 1.3833 - val_loss: 15.9794 

Epoch 9/20 

2236/2236 [==============================] - 1s 605us/sample - loss: 1.6727 - val_loss: 15.5430 

Epoch 10/20 

2236/2236 [==============================] - 1s 615us/sample - loss: 0.2352 - val_loss: 10.8625 

Epoch 11/20 

2236/2236 [==============================] - 1s 629us/sample - loss: 0.1671 - val_loss: 8.7755 

Epoch 12/20 

2236/2236 [==============================] - 1s 602us/sample - loss: 1.2262 - val_loss: 11.1153 

Epoch 13/20 

2236/2236 [==============================] - 1s 619us/sample - loss: 0.3032 - val_loss: 5.8586 

Epoch 14/20 

2236/2236 [==============================] - 1s 605us/sample - loss: 0.6980 - val_loss: 4.8730 

Epoch 15/20 

2236/2236 [==============================] - 1s 604us/sample - loss: 0.1244 - val_loss: 3.7878 

Epoch 16/20 

2236/2236 [==============================] - 1s 584us/sample - loss: 0.0519 - val_loss: 2.8241 

Epoch 17/20 

2236/2236 [==============================] - 1s 603us/sample - loss: 0.0453 - val_loss: 2.6725 

Epoch 18/20 

2236/2236 [==============================] - 1s 604us/sample - loss: 3.0735 - val_loss: 2.8718 

Epoch 19/20 

2236/2236 [==============================] - 1s 600us/sample - loss: 0.3139 - val_loss: 1.7264 

Epoch 20/20 

2236/2236 [==============================] - 1s 610us/sample - loss: 0.0767 - val_loss: 1.5763 

INFO: Training is done! 

The model's loss, in this context, acts as an indicator of deviation from known activities patterns. 

Concurrently, we monitor the vertical displacement of the body's centroid across frames. Should 

this displacement exceed a predetermined threshold while the anomaly level is similarly elevated, 

the system interprets this as a fall. 

According to Feng Jin et al. (2022) this detection method is rooted in the World Health 

Organization's definition of a fall, incorporating both the unexpected nature of the movement 

(anomaly level) and the resultant change in body position (centroid height drop). The HVRAE's 

dual-monitoring mechanism ensures that a fall is recognized not only by the irregularity of motion 

but also by the physical fall detected by the radar. 
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Figure 30: HVRAE Anomalies, and Z centroid shifts change over time for 15 falls recorded seperate from the data used to 

train the model. Subject: Ali Zaytoun 

Figure 30 showcases the effectiveness of the HVRAE model in fall detection. The model, tested 

on 15 instances of falls, exhibits a clear correlation between spikes in the anomaly detection metric 

(Interpolated Loss History) and significant shifts in the centroid height, confirming the occurrence 

of a fall. The visual data illustrates that all 15 falls were successfully identified, demonstrating the 

model’s proficiency in distinguishing between regular activities and fall events. The simultaneous 

peaks in the loss history and the centroid's movement provide a compelling visualization of the 

HVRAE model’s capability to detect anomalies in real-time accurately. This result validates the 

HVRAE’s potential as a reliable tool for fall detection in real-world scenarios. 

Please note: The training dataset was composed of point cloud data from subjects of varying body 

types, including Bhupali Kaushik (1.68m, 58kg) and Fucheng Wen (1.80m, 90kg). This diversity 

in data ensures the model's adaptability to different human body shapes.  

The model, initially trained on standard activity data, was evaluated using anomalous data, which 

included 15 instances of falls by the subject, Ali Zaytoun (1.85m, 85kg). The outcomes of this 

assessment are illustrated in Figure 30. 

Subsequent testing was conducted on subject, Saad Rhanmouni (1.85m, 75kg), to validate the 

model's generalization capabilities across unseen body dimensions and movements. 

Enhancements to our fall detection system have culminated in a series of tests, including a critical 

scenario involving 30 simulated falls. The system successfully identified 29 of these incidents. 

However, it failed to detect one scenario and erroneously triggered two false alerts. This resulted 

in an accuracy rate exceeding 90% for this particular test series. 
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To maintain transparency and foster collaborative development, a video capturing these test 

scenarios was shared with our academic class, project mentor, and client, providing a 

comprehensive view of the system's performance and reliability in real-time fall detection. 

The figure 31 shows the obtained results: 

 

Figure 31: Demo - 30 Falls, real time testing of the trained and tested model. Subject Saad Rhanmouni 

➔The HVRAE model has been incorporated into our real-time data acquisition system. 

Utilizing a 10-second observational window, our Python script processes the amassed 200 

frames, equivalent to the data collected over this period. Upon detection of a fall, as 

identified through the HVRAE's analysis, an alert is promptly communicated to users via 

the graphical user interface detailed below. This approach ensures continuous monitoring 

and immediate notification, reinforcing the responsiveness and reliability of the fall 

detection mechanism within the care environment. 

Updated GUI for Fall Detection 

In addition to transitioning from the PointNet model to the HVRAE model, updates have been 

implemented to the graphical user interface (GUI) that displays the point cloud and alerts users to 

fall incidents. The redesigned interface, as depicted in the accompanying illustration, now requires 

user initiation to begin data collection; the "Start Detecting" button must be engaged for the radar 

to activate and update the point cloud display. Conversely, selecting "Stop Detecting" halts the 

radar's data collection. 

The notification system within the GUI maintains its user-friendly color cues: a green display 

signifies the absence of a detected fall, while a red display indicates a fall has been recognized. 
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The dimensions of the notification box have been refined to enhance visual appeal and interface 

aesthetics. 

Moreover, the GUI's visualization elements have seen significant improvements for clarity and 

usability. The extraneous diagonal lines that were once present along the side walls have been 

excised to create a cleaner, more streamlined user experience. A new grid floor feature has been 

introduced, providing users with clearer orientation and a more intuitive grasp of the spatial 

relationships depicted in the point cloud visualization. These enhancements serve to make the 

system more accessible and easier to interpret for users monitoring the radar's detections. 

 

Figure 32: Updated GUI Interface 

Notification system, and Mini-computer: 

For the final design of our fall detection system, we have retained the relay-based notification 

approach, previously demonstrated in our second prototype, for its reliability and efficiency.  

 

Figure 33: USB Relay and 5V Alarm Prototype 
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The system architecture has been optimized by transitioning to a compact, minicomputer setup, 

running a Linux environment which enhances computation efficiency. 

 

Figure 34: Interl NUC - NUC5i3RYH MiniComputer 

During testing, we observed that the Intel NUC minicomputer encountered difficulties with 

simultaneous live detection and processing using the trained HVRAE model. To address this 

limitation and prevent potential data buffer saturation, we recommend upgrading to a more 

powerful system, such as the Nvidia Jetson Nano. This device offers faster rendering capabilities 

and is better equipped to handle the demands of reliable, real-time fall detection, ensuring that 

the system operates seamlessly without any lag or risk of overloading. 

Discussion: 

The final prototype presents a sophisticated solution to the initial problem of detecting falls in 

elderly care residences with a high degree of accuracy and minimal false positives. By 

leveraging HVRAE, the prototype addresses the limitations of the earlier PointNet model, which 

was unable to effectively discern falls from other activities in real-world scenarios. The 

sequential detection method and dual-indicator system—spikes in anomaly levels coupled with 

centroid height reductions—significantly enhance the reliability of the detection mechanism, as 

demonstrated in rigorous testing with a 90% accuracy rate. Furthermore, the prototype integrates 

seamlessly with the real-time data acquisition system, operating within a 10-second window to 

process and notify users of falls, thus fulfilling the requirements for an efficient, contactless, and 

privacy-respecting monitoring solution. This innovative approach successfully meets the 

project's objectives, providing a robust and user-friendly fall detection system. 
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Ethical and Diversity Considerations 

When considering the ethical implications of our actions, particularly the utilization of 

opensource code for PointNet, HVARE and the associated training dataset, we recognize a 

significant benefit from a utilitarian perspective. This approach enables us to complete our project 

within a constrained timeframe, which is advantageous for us. However, from the perspectives of 

rights and equity, the reliance on open-source code and datasets poses ethical challenges. These 

resources were developed through the diligent efforts of researchers, and utilizing them as if they 

were our own creations raises concerns about fairness and respect for the original authors. To 

address these ethical concerns, we decided to continue utilizing open-source resources as they are 

essential for completing our project on time. However, we ensured that the creators of these 

resources receive proper acknowledgment. We credit the providers during our final presentation 

and in our report. Furthermore, we've discussed the future of this project with our technical adviser, 

who is interested in pursuing it as a research topic. We will ensure to cite the providers 

appropriately in any subsequent academic paper.  

In our design and development process, we ensured that all team members felt valued and 

respected. One aspect of our diverse team is the representation of people from various countries, 

each bringing unique perspectives and experiences to the table. This diversity enriches our 

discussions and leads to more comprehensive problem-solving approaches. Additionally, we 

recognized and accommodated religious practices such as Ramadan, where some teammates 

observed fasting. To ensure inclusivity, we adjusted our schedules to allow for dinner breaks at 

the same time, demonstrating our respect for their religious commitments. Furthermore, we 

embraced the opportunity to celebrate cultural festivities together even though not all members 

follows Ramadan. By embracing diversity and accommodating individual needs, we not only 

promote a more inclusive work environment but also harness the collective strength of our team 

to drive innovation and success. 
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Reflection and Lessons Learned 

Our journey from the initial concept to the development of a functional prototype of the fall 

detection system has been marked by numerous challenges and valuable insights. Through each 

phase of the project, we encountered obstacles that prompted us to adapt our approach, refine our 

methods, and collaborate closely with our client to ensure alignment with their needs and 

expectations. 

One of the key takeaways from this project is the importance of client feedback and iterative 

development. Our initial MVP presentation provided us with a valuable opportunity to showcase 

our progress and receive input from our client, Mr. Hesam. For instance, his request for the fall 

detection system to integrate with their existing communication system prompted us to explore 

alternative notification methods, ultimately leading to the adoption of a USB-controlled relay for 

enhanced reliability. Additionally, our experience with hardware integration underscored the 

importance of selecting components that not only meet functional requirements but also align with 

client preferences for size and ease of use. 

We faced challenges right from the sensing part where the detected object points given by the radar 

were not enough and did not capture the actual scenario fully. To tackle this, we experimented 

with different variants of radar and their optimum hardware configuration for our application, 

finalizing the model in the end. 

Another critical lesson learned pertains to the significance of data quality and preprocessing in 

machine learning applications. Our early attempts at fall detection using the least mean square 

method highlighted the challenges posed by noisy data and the limitations of traditional signal 

processing techniques. This realization prompted us to explore more sophisticated machine 

learning algorithms, such as PointNet, and invest in robust data preprocessing techniques, 

including down sampling and over sampling, to ensure consistency and accuracy in our model 

training. 

Throughout this project, we also gained valuable insights into the complexities of interdisciplinary 

collaboration and project management. Effective communication, task delegation, and regular 

progress updates with the help of Jira platform, were essential for keeping our team aligned and 

focused on our shared goals. Moreover, our engagement with external stakeholders, such as 

Professor Argha, provided us with invaluable expertise and resources to overcome technical 

challenges and enrich our solution. 

In conclusion, our journey to develop a fall detection system has been a valuable learning 

experience that has reinforced the importance of client-centric design, iterative development, and 

interdisciplinary collaboration. By embracing feedback, leveraging advanced technologies, and 

prioritizing user experience, we have laid the foundation for a robust and reliable solution that 

addresses the unique needs of our client and contributes to the advancement of healthcare 

technology.  
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Conclusion 

The development of a fall detection system for retirement homes has been a dynamic journey 

marked by continuous iteration, refinement, and adaptation to meet evolving client needs and 

technological challenges. Through an iterative process of prototyping, testing, and feedback 

incorporation, our team has navigated the complexities inherent in designing a reliable and 

effective solution for elderly care. Client feedback and the professor’s guidance served as a 

compass leading our development trajectory, prompting crucial refinements and enhancements. 

The Minimum Viable Product (MVP) demonstration provided a foundational glimpse into the 

operational concept of the fall detection system. Despite its limitations, such as the radar's inability 

to process rapid influxes of data during falls, this initial iteration served as a springboard for further 

enhancements.  

The transition to the Beta Release introduced pivotal changes, including the adoption of a new, 

more powerful IWR6843ISK radar and a direct USB-controlled relay for driving the buzzer load 

and the integration of existing communication systems for notifications. The radar sends detected 

object points to the PointNet ML model on the minicomputer via UART. Upon fall detection, a 

PowerShell command triggers the USB relay. This iteration marked a significant step forward in 

system functionality and reliability, aligning more closely with client expectations and 

requirements. The integration of PointNet Neural Networks for fall detection introduced new 

challenges and opportunities. Data preprocessing methods, such as down sampling and 

oversampling, were employed to ensure consistency in input data, enhancing the model's 

performance and accuracy. Despite initial setbacks in model training accuracy, iterative 

improvements led to notable enhancements, demonstrating the efficacy of our approach. 

The incorporation of a graphical user interface (GUI) and notification system updates further 

enriched the user experience and functionality of the system. Real-time visualization of fall events 

through the GUI and seamless integration with existing communication systems portrayed our 

commitment to user-centric design and practical utility. 

In conclusion, the development journey of the fall detection system exemplifies the iterative and 

collaborative nature of product development. Through close collaboration with stakeholders, 

continual refinement of design and functionality, and a commitment to user needs, our team has 

crafted a solution poised to make a meaningful impact in the realm of elderly care. As we embark 

on future iterations and enhancements, we remain dedicated to delivering a solution that prioritizes 

safety, reliability, and user experience for the benefit of our clients and their residents. 
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Future Work 

Our initial endeavors in fall detection relied on a frame-by-frame anomaly detection method, 

which demonstrated limitations in accurately discerning the subtleties of rapid subject movements. 

Acknowledging this constraint, our future work will be focusing on adopting a more advanced 

system that will prevents falls by proactively identifying possible dangers.  

The proposed enhancement involves the implementation of an advanced system capable of 

actively identifying any new objects that emerge on the ground, thereby pre-emptively alerting 

individuals to potential fall risks, particularly relevant in environments frequented by elderly 

individuals. By proactively detecting and flagging potential hazards in real-time, our system aims 

to mitigate the risk of accidents and enhance overall safety. PointNet is a powerful neural network 

architecture renowned for its ability to classify data on a frame-by-frame basis while also 

possessing the remarkable capability to recognize frames even when they are subjected to rotation 

or jitter. Leveraging these distinctive features, we intend to deploy PointNet as our primary model 

for object identification within indoor environments. By harnessing its robust classification 

capabilities and inherent resilience to rotational variations and minor disturbances, we anticipate 

achieving accurate and reliable object recognition performance, even in complex real-world 

scenarios. 

The mini-computer currently employed in the fall-detection system lacks a GPU, leading to 

suboptimal performance and noticeable delays in responsiveness. Consequently, upgrading to a 

more powerful mini-computer has become a priority item on our agenda to propel this project into 

its next phase. By securing a mini-computer with enhanced processing capabilities, including a 

dedicated GPU, we anticipate significant improvements in system performance, thereby enabling 

smoother and more efficient operation. This upgrade will facilitate the seamless execution of 

resource-intensive tasks, contributing to the overall advancement and efficacy of the project. 

Moreover, continuous collaboration with stakeholders, including end-users and healthcare 

professionals, will be integral to the iterative refinement and validation of our system. Feedback 

from these stakeholders will inform ongoing improvements and enhancements, ensuring that our 

solution remains responsive to evolving needs and challenges in fall prevention and healthcare 

management. 

Furthermore, the same mmWave radar technology can be used to extend support for human vital 

monitoring like heart rate, breathing rate and patterns. This is possible due to the sub-millimeter 

accuracy of the radar capable of capturing the minute displacements of heart and lungs. These 

vitals are crucial indicators of health status and can help to identify underlying conditions such as 

sleep apnea earlier when changes are observed over time. 

In summary, our future work will center on the development and deployment of an advanced fall 

prevention system that leverages state-of-the-art technologies and proactive detection mechanisms 

to enhance safety and well-being in diverse healthcare settings. Through ongoing collaboration 
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and innovation, we aim to deliver a robust and effective solution that addresses the complex 

challenges associated with fall prevention and promotes optimal outcomes for individuals at risk 

of falls. 
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Appendix 

Appendix A 

import serial 

import time 

import numpy as np 

import pyqtgraph as pg 

from pyqtgraph.Qt import QtGui 

import sys 

from PyQt5 import QtGui, QtWidgets, QtCore 

from pyqtgraph.opengl import GLViewWidget, GLScatterPlotItem 

import csv 

import pandas as pd 

 

csv_file_path = 'radar_data.csv' 

 

# Change the configuration file name 

configFileName = '1443config.cfg' 

 

CLIport = {} 

Dataport = {} 

byteBuffer = np.zeros(2**15,dtype = 'uint8') 

byteBufferLength = 0; 

 

# ------------------------------------------------------------------ 

 

# Function to configure the serial ports and send the data from 

# the configuration file to the radar 

def serialConfig(configFileName): 

     

    global CLIport 

    global Dataport 

    # Open the serial ports for the configuration and the data ports 

     

    # Raspberry pi 

    #CLIport = serial.Serial('/dev/ttyACM0', 115200) 

    #Dataport = serial.Serial('/dev/ttyACM1', 921600) 

     

    # Windows 

    CLIport = serial.Serial('COM3', 115200) 

    Dataport = serial.Serial('COM4', 921600) 

 

    # Read the configuration file and send it to the board 
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    config = [line.rstrip('\r\n') for line in open(configFileName)] 

    for i in config: 

        CLIport.write((i+'\n').encode()) 

        print(i) 

        time.sleep(0.01) 

         

    return CLIport, Dataport 

 

# ------------------------------------------------------------------ 

 

# Function to parse the data inside the configuration file 

def parseConfigFile(configFileName): 

    configParameters = {} # Initialize an empty dictionary to store the 

configuration parameters 

     

    # Read the configuration file and send it to the board 

    config = [line.rstrip('\r\n') for line in open(configFileName)] 

    for i in config: 

         

        # Split the line 

        splitWords = i.split(" ") 

         

        # Hard code the number of antennas, change if other configuration is used 

        numRxAnt = 4 

        numTxAnt = 3 

         

        # Get the information about the profile configuration 

        if "profileCfg" in splitWords[0]: 

            startFreq = int(float(splitWords[2])) 

            idleTime = int(splitWords[3]) 

            rampEndTime = float(splitWords[5]) 

            freqSlopeConst = float(splitWords[8]) 

            numAdcSamples = int(splitWords[10]) 

            numAdcSamplesRoundTo2 = 1; 

             

            while numAdcSamples > numAdcSamplesRoundTo2: 

                numAdcSamplesRoundTo2 = numAdcSamplesRoundTo2 * 2; 

                 

            digOutSampleRate = int(splitWords[11]); 

             

        # Get the information about the frame configuration     

        elif "frameCfg" in splitWords[0]: 

             

            chirpStartIdx = int(splitWords[1]); 

            chirpEndIdx = int(splitWords[2]); 
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            numLoops = int(splitWords[3]); 

            numFrames = int(splitWords[4]); 

            framePeriodicity = int(splitWords[5]); 

 

             

    # Combine the read data to obtain the configuration parameters            

    numChirpsPerFrame = (chirpEndIdx - chirpStartIdx + 1) * numLoops 

    configParameters["numDopplerBins"] = numChirpsPerFrame / numTxAnt 

    configParameters["numRangeBins"] = numAdcSamplesRoundTo2 

    configParameters["rangeResolutionMeters"] = (3e8 * digOutSampleRate * 1e3) / 

(2 * freqSlopeConst * 1e12 * numAdcSamples) 

    configParameters["rangeIdxToMeters"] = (3e8 * digOutSampleRate * 1e3) / (2 * 

freqSlopeConst * 1e12 * configParameters["numRangeBins"]) 

    configParameters["dopplerResolutionMps"] = 3e8 / (2 * startFreq * 1e9 * 

(idleTime + rampEndTime) * 1e-6 * configParameters["numDopplerBins"] * numTxAnt) 

    configParameters["maxRange"] = (300 * 0.9 * digOutSampleRate)/(2 * 

freqSlopeConst * 1e3) 

    configParameters["maxVelocity"] = 3e8 / (4 * startFreq * 1e9 * (idleTime + 

rampEndTime) * 1e-6 * numTxAnt) 

     

    return configParameters 

    

# ------------------------------------------------------------------ 

 

# Funtion to read and parse the incoming data 

def readAndParseData14xx(Dataport, configParameters): 

    global byteBuffer, byteBufferLength 

     

    # Constants 

    OBJ_STRUCT_SIZE_BYTES = 12; 

    BYTE_VEC_ACC_MAX_SIZE = 2**15; 

    MMWDEMO_UART_MSG_DETECTED_POINTS = 1; 

    MMWDEMO_UART_MSG_RANGE_PROFILE   = 2; 

    maxBufferSize = 2**15; 

    magicWord = [2, 1, 4, 3, 6, 5, 8, 7] 

     

    # Initialize variables 

    magicOK = 0 # Checks if magic number has been read 

    dataOK = 0 # Checks if the data has been read correctly 

    frameNumber = 0 

    detObj = {} 

     

    readBuffer = Dataport.read(Dataport.in_waiting) 

    byteVec = np.frombuffer(readBuffer, dtype = 'uint8') 

    byteCount = len(byteVec) 
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    # Check that the buffer is not full, and then add the data to the buffer 

    if (byteBufferLength + byteCount) < maxBufferSize: 

        byteBuffer[byteBufferLength:byteBufferLength + byteCount] = 

byteVec[:byteCount] 

        byteBufferLength = byteBufferLength + byteCount 

         

    # Check that the buffer has some data 

    if byteBufferLength > 16: 

         

        # Check for all possible locations of the magic word 

        possibleLocs = np.where(byteBuffer == magicWord[0])[0] 

 

        # Confirm that is the beginning of the magic word and store the index in 

startIdx 

        startIdx = [] 

        for loc in possibleLocs: 

            check = byteBuffer[loc:loc+8] 

            if np.all(check == magicWord): 

                startIdx.append(loc) 

                

        # Check that startIdx is not empty 

        if startIdx: 

             

            # Remove the data before the first start index 

            if startIdx[0] > 0 and startIdx[0] < byteBufferLength: 

                byteBuffer[:byteBufferLength-startIdx[0]] = 

byteBuffer[startIdx[0]:byteBufferLength] 

                byteBuffer[byteBufferLength-startIdx[0]:] = 

np.zeros(len(byteBuffer[byteBufferLength-startIdx[0]:]),dtype = 'uint8') 

                byteBufferLength = byteBufferLength - startIdx[0] 

                 

            # Check that there have no errors with the byte buffer length 

            if byteBufferLength < 0: 

                byteBufferLength = 0 

                 

            # word array to convert 4 bytes to a 32 bit number 

            word = [1, 2**8, 2**16, 2**24] 

             

            # Read the total packet length 

            totalPacketLen = np.matmul(byteBuffer[12:12+4],word) 

             

            # Check that all the packet has been read 

            if (byteBufferLength >= totalPacketLen) and (byteBufferLength != 0): 

                magicOK = 1 
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    # If magicOK is equal to 1 then process the message 

    if magicOK: 

        # word array to convert 4 bytes to a 32 bit number 

        word = [1, 2**8, 2**16, 2**24] 

         

        # Initialize the pointer index 

        idX = 0 

         

        # Read the header 

        magicNumber = byteBuffer[idX:idX+8] 

        idX += 8 

        version = format(np.matmul(byteBuffer[idX:idX+4],word),'x') 

        idX += 4 

        totalPacketLen = np.matmul(byteBuffer[idX:idX+4],word) 

        idX += 4 

        platform = format(np.matmul(byteBuffer[idX:idX+4],word),'x') 

        idX += 4 

        frameNumber = np.matmul(byteBuffer[idX:idX+4],word) 

        idX += 4 

        timeCpuCycles = np.matmul(byteBuffer[idX:idX+4],word) 

        idX += 4 

        numDetectedObj = np.matmul(byteBuffer[idX:idX+4],word) 

        idX += 4 

        numTLVs = np.matmul(byteBuffer[idX:idX+4],word) 

        idX += 4 

         

        # UNCOMMENT IN CASE OF SDK 2 

        #subFrameNumber = np.matmul(byteBuffer[idX:idX+4],word) 

        #idX += 4 

         

        # Read the TLV messages 

        for tlvIdx in range(numTLVs): 

             

            # word array to convert 4 bytes to a 32 bit number 

            word = [1, 2**8, 2**16, 2**24] 

 

            # Check the header of the TLV message 

            tlv_type = np.matmul(byteBuffer[idX:idX+4],word) 

            idX += 4 

            tlv_length = np.matmul(byteBuffer[idX:idX+4],word) 

            idX += 4 

             

            # Read the data depending on the TLV message 

            if tlv_type == MMWDEMO_UART_MSG_DETECTED_POINTS: 
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                # word array to convert 4 bytes to a 16 bit number 

                word = [1, 2**8] 

                tlv_numObj = np.matmul(byteBuffer[idX:idX+2],word) 

                idX += 2 

                tlv_xyzQFormat = 2**np.matmul(byteBuffer[idX:idX+2],word) 

                idX += 2 

                 

                # Initialize the arrays 

                rangeIdx = np.zeros(tlv_numObj,dtype = 'int16') 

                dopplerIdx = np.zeros(tlv_numObj,dtype = 'int16') 

                peakVal = np.zeros(tlv_numObj,dtype = 'int16') 

                x = np.zeros(tlv_numObj,dtype = 'int16') 

                y = np.zeros(tlv_numObj,dtype = 'int16') 

                z = np.zeros(tlv_numObj,dtype = 'int16') 

                 

                for objectNum in range(tlv_numObj): 

                     

                    # Read the data for each object 

                    rangeIdx[objectNum] =  np.matmul(byteBuffer[idX:idX+2],word) 

                    idX += 2 

                    dopplerIdx[objectNum] = np.matmul(byteBuffer[idX:idX+2],word) 

                    idX += 2 

                    peakVal[objectNum] = np.matmul(byteBuffer[idX:idX+2],word) 

                    idX += 2 

                    x[objectNum] = np.matmul(byteBuffer[idX:idX+2],word) 

                    idX += 2 

                    y[objectNum] = np.matmul(byteBuffer[idX:idX+2],word) 

                    idX += 2 

                    z[objectNum] = np.matmul(byteBuffer[idX:idX+2],word) 

                    idX += 2 

                     

                # Make the necessary corrections and calculate the rest of the 

data 

                rangeVal = rangeIdx * configParameters["rangeIdxToMeters"] 

                dopplerIdx[dopplerIdx > (configParameters["numDopplerBins"]/2 - 

1)] = dopplerIdx[dopplerIdx > (configParameters["numDopplerBins"]/2 - 1)] - 65535 

                dopplerVal = dopplerIdx * 

configParameters["dopplerResolutionMps"] 

                #x[x > 32767] = x[x > 32767] - 65536 

                #y[y > 32767] = y[y > 32767] - 65536 

                #z[z > 32767] = z[z > 32767] - 65536 

                x = x / tlv_xyzQFormat 

                y = y / tlv_xyzQFormat 

                z = z / tlv_xyzQFormat 
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                # Store the data in the detObj dictionary 

                detObj = {"numObj": tlv_numObj, "rangeIdx": rangeIdx, "range": 

rangeVal, "dopplerIdx": dopplerIdx, \ 

                          "doppler": dopplerVal, "peakVal": peakVal, "x": x, "y": 

y, "z": z} 

                 

                dataOK = 1              

         

   

        # Remove already processed data 

        if idX > 0 and byteBufferLength > idX: 

            shiftSize = totalPacketLen 

                

            byteBuffer[:byteBufferLength - shiftSize] = 

byteBuffer[shiftSize:byteBufferLength] 

            byteBuffer[byteBufferLength - shiftSize:] = 

np.zeros(len(byteBuffer[byteBufferLength - shiftSize:]),dtype = 'uint8') 

            byteBufferLength = byteBufferLength - shiftSize 

             

            # Check that there are no errors with the buffer length 

            if byteBufferLength < 0: 

                byteBufferLength = 0 

                 

 

    return dataOK, frameNumber, detObj 

 

# ------------------------------------------------------------------ 

 

# Funtion to update the data and display in the plot 

def update(): 

      

    dataOk = 0 

    global detObj 

    x = [] 

    y = [] 

       

    # Read and parse the received data 

    dataOk, frameNumber, detObj = readAndParseData14xx(Dataport, 

configParameters) 

     

    if dataOk and len(detObj["x"]) > 0: 

        #print(detObj) 

        x = -detObj["x"] 

        y = detObj["y"] 
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        s.setData(x,y) 

        QtGui.QGuiApplication.processEvents() 

     

    return dataOk 

# -------------------------    MAIN   -----------------------------------------   

if __name__ == '__main__': 

    # Configurate the serial port 

    CLIport, Dataport = serialConfig(configFileName) 

 

    # Get the configuration parameters from the configuration file 

    configParameters = parseConfigFile(configFileName) 

 

    # Initialize the Qt App and PlotWidget 

    app = QtWidgets.QApplication(sys.argv) 

    mainWin = QtWidgets.QMainWindow() 

    mainWin.setWindowTitle('2D scatter plot') 

 

    # Create a pyqtgraph Plot Widget and set it as the central widget of the 

MainWindow 

    plotWidget = pg.PlotWidget() 

    mainWin.setCentralWidget(plotWidget) 

 

    # Configure the plot 

    plotWidget.setBackground('w') 

    plotWidget.setXRange(-1.5, 1.5) 

    plotWidget.setYRange(0, 3) 

    plotWidget.setLabel('left', 'Y position (m)') 

    plotWidget.setLabel('bottom', 'X position (m)') 

    s = plotWidget.plot([], [], pen=None, symbol='o') 

 

    # Show the MainWindow 

    mainWin.show() 

 

    # Define the update function within the main block to access the plotWidget 

    def update(): 

        dataOk = 0 

        global detObj 

        x = [] 

        y = [] 

 

        # Read and parse the received data 

        dataOk, frameNumber, detObj = readAndParseData14xx(Dataport, 

configParameters) 
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        if dataOk and len(detObj["x"]) > 0: 

            x = -detObj["x"] 

            y = detObj["y"] 

            z = detObj["z"] 

            rangeIdx = detObj["rangeIdx"] 

            dopplerIdx = detObj["dopplerIdx"] 

            peakVal = detObj["peakVal"] 

            df = pd.DataFrame({ 

                'Frame Number': [frameNumber] * len(x), 

                'X': x, 

                'Y': y, 

                'Z': z, 

                'RangeIdx': rangeIdx, 

                'DopplerIdx': dopplerIdx, 

                'PeakVal': peakVal 

             }) 

    # Append the DataFrame to the CSV file 

            df.to_csv(csv_file_path, mode='a', index=False, header=not 

pd.io.common.file_exists(csv_file_path)) 

            s.setData(x, y) 

            QtGui.QGuiApplication.processEvents() 

         

        return dataOk 

 

    # Main loop adaptation for PyQt (using a timer) 

    timer = QtCore.QTimer() 

    timer.timeout.connect(update) 

    timer.start(33) # Update period in milliseconds to achieve ~30 Hz update rate 

 

    # Start the Qt event loop 

    sys.exit(app.exec_()) 
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Appendix B: 

 

import matplotlib.pyplot as plt 

from mpl_toolkits.mplot3d import Axes3D 

import pandas as pd 

from matplotlib.animation import FuncAnimation, FFMpegWriter 

 

# Set the path to the ffmpeg executable 

plt.rcParams['animation.ffmpeg_path'] = 'C:/ffmpeg/bin/ffmpeg.exe' 

 

# Read the CSV file 

file = pd.read_csv('saad Fall processed time.csv') 

 

# Drop the unnecessary columns 

file = file.drop(["RangeIdx", "DopplerIdx", "PeakVal", "Frame Number", "Time 

[ms]"], axis='columns') 

 

# Group by 'Time[s]' 

grouped = file.groupby('Time[s]') 

 

# Define the radar position 

radar_position = (0, 0, 0) 

 

# Prepare the figure and 3D axis 

fig = plt.figure() 

ax = fig.add_subplot(111, projection='3d') 

ax.set_xlabel('X Label') 

ax.set_ylabel('Y Label') 

ax.set_zlabel('Z Label') 

 

def update(frame_number): 

    ax.clear()  # Clear previous frame 

    frame_data = grouped.get_group(frame_number) 

     

    # Extract X, Y, Z values 

    X = frame_data["X"] 

    Y = frame_data["Y"] 

    Z = frame_data["Z"] 

 

    # Create a scatter plot for the data points 

    ax.scatter(X, Y, Z, marker='o') 

     

    # Plot the radar position 

    ax.scatter(*radar_position, color='red', marker='^', label='Radar Position') 
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    # Set title 

    ax.set_title(f'3D plot of XYZ changes for Time[s] {frame_number}') 

    ax.set_xlabel('X Label') 

    ax.set_ylabel('Y Label') 

    ax.set_zlabel('Z Label') 

 

    # Adjust the axes limits 

    ax.set_xlim([-1.5, 1.5]) 

    ax.set_ylim([-0, 2]) 

    ax.set_zlim([-2, 2]) 

    elevation_angle = 20  # change this value for elevation 

    azimuth_angle = 300# change this value for azimuth 

    ax.view_init(elev=elevation_angle, azim=azimuth_angle) 

 

    # Show radar position in the legend 

    ax.legend() 

 

# Creating animation 

ani = FuncAnimation(fig, update, frames=grouped.groups.keys(), interval=50, 

repeat=False) 

 

# Set up the writer 

writer = FFMpegWriter(fps=20, metadata=dict(artist='Me'), bitrate=1800) 

 

# Save the animation 

ani.save('radar_data_animation.mp4', writer=writer) 

 

# Show plot 

plt.show() 
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Appendix C: 

import argparse 

import subprocess 

import tensorflow as tf 

import numpy as np 

from datetime import datetime 

import json 

import os 

import sys 

BASE_DIR = os.path.dirname(os.path.abspath(__file__)) 

sys.path.append(BASE_DIR) 

sys.path.append(os.path.dirname(BASE_DIR)) 

import provider 

import pointnet_part_seg as model 

 

# enabling Tensorflow1 

tf.compat.v1.disable_eager_execution() 

# DEFAULT SETTINGS 

parser = argparse.ArgumentParser() 

parser.add_argument('--gpu', type=int, default=1, help='GPU to use [default: GPU 

0]') 

parser.add_argument('--batch', type=int, default=32, help='Batch Size during 

training [default: 32]') 

parser.add_argument('--epoch', type=int, default=200, help='Epoch to run 

[default: 50]') 

parser.add_argument('--point_num', type=int, default=2048, help='Point Number 

[256/512/1024/2048]') 

parser.add_argument('--output_dir', type=str, default='train_results', 

help='Directory that stores all training logs and trained models') 

parser.add_argument('--wd', type=float, default=0, help='Weight Decay [Default: 

0.0]') 

FLAGS = parser.parse_args() 

 

hdf5_data_dir = os.path.join(BASE_DIR, './hdf5_data') 

 

# MAIN SCRIPT 

point_num = FLAGS.point_num 

batch_size = FLAGS.batch 

output_dir = FLAGS.output_dir 

 

if not os.path.exists(output_dir): 

    os.mkdir(output_dir) 

 

color_map_file = os.path.join(hdf5_data_dir, 'part_color_mapping.json') 
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color_map = json.load(open(color_map_file, 'r')) 

 

all_obj_cats_file = os.path.join(hdf5_data_dir, 'all_object_categories.txt') 

fin = open(all_obj_cats_file, 'r') 

lines = [line.rstrip() for line in fin.readlines()] 

all_obj_cats = [(line.split()[0], line.split()[1]) for line in lines] 

fin.close() 

 

all_cats = json.load(open(os.path.join(hdf5_data_dir, 

'overallid_to_catid_partid.json'), 'r')) 

NUM_CATEGORIES = 16 

NUM_PART_CATS = len(all_cats) 

 

print('#### Batch Size: {0}'.format(batch_size)) 

print('#### Point Number: {0}'.format(point_num)) 

print('#### Training using GPU: {0}'.format(FLAGS.gpu)) 

 

DECAY_STEP = 16881 * 20 

DECAY_RATE = 0.5 

 

LEARNING_RATE_CLIP = 1e-5 

 

BN_INIT_DECAY = 0.5 

BN_DECAY_DECAY_RATE = 0.5 

BN_DECAY_DECAY_STEP = float(DECAY_STEP * 2) 

BN_DECAY_CLIP = 0.99 

 

BASE_LEARNING_RATE = 0.001 

MOMENTUM = 0.9 

TRAINING_EPOCHES = FLAGS.epoch 

print('### Training epoch: {0}'.format(TRAINING_EPOCHES)) 

 

TRAINING_FILE_LIST = os.path.join(hdf5_data_dir, 'train_hdf5_file_list.txt') 

TESTING_FILE_LIST = os.path.join(hdf5_data_dir, 'val_hdf5_file_list.txt') 

 

MODEL_STORAGE_PATH = os.path.join(output_dir, 'trained_models') 

if not os.path.exists(MODEL_STORAGE_PATH): 

    os.mkdir(MODEL_STORAGE_PATH) 

 

LOG_STORAGE_PATH = os.path.join(output_dir, 'logs') 

if not os.path.exists(LOG_STORAGE_PATH): 

    os.mkdir(LOG_STORAGE_PATH) 

 

SUMMARIES_FOLDER =  os.path.join(output_dir, 'summaries') 

if not os.path.exists(SUMMARIES_FOLDER): 
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    os.mkdir(SUMMARIES_FOLDER) 

 

def printout(flog, data): 

    print(data) 

    flog.write(data + '\n') 

 

def placeholder_inputs(): 

    pointclouds_ph = tf.compat.v1.placeholder(tf.float32, shape=(batch_size, 

point_num, 3)) 

    input_label_ph = tf.compat.v1.placeholder(tf.float32, shape=(batch_size, 

NUM_CATEGORIES)) 

    labels_ph = tf.compat.v1.placeholder(tf.int32, shape=(batch_size)) 

    seg_ph = tf.compat.v1.placeholder(tf.int32, shape=(batch_size, point_num)) 

    return pointclouds_ph, input_label_ph, labels_ph, seg_ph 

 

def convert_label_to_one_hot(labels): 

    label_one_hot = np.zeros((labels.shape[0], NUM_CATEGORIES)) 

    for idx in range(labels.shape[0]): 

        label_one_hot[idx, labels[idx]] = 1 

    return label_one_hot 

 

def train(): 

    with tf.Graph().as_default(): 

        with tf.device('/gpu:'+str(FLAGS.gpu)): 

            pointclouds_ph, input_label_ph, labels_ph, seg_ph = 

placeholder_inputs() 

            is_training_ph = tf.compat.v1.placeholder(tf.bool, shape=()) 

 

            batch = tf.Variable(0, trainable=False) 

            learning_rate = tf.compat.v1.train.exponential_decay( 

                            BASE_LEARNING_RATE,     # base learning rate 

                            batch * batch_size,     # global_var indicating the 

number of steps 

                            DECAY_STEP,             # step size 

                            DECAY_RATE,             # decay rate 

                            staircase=True          # Stair-case or continuous 

decreasing 

                            ) 

            learning_rate = tf.maximum(learning_rate, LEARNING_RATE_CLIP) 

         

            bn_momentum = tf.compat.v1.train.exponential_decay( 

                      BN_INIT_DECAY, 

                      batch*batch_size, 

                      BN_DECAY_DECAY_STEP, 

                      BN_DECAY_DECAY_RATE, 
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                      staircase=True) 

            bn_decay = tf.minimum(BN_DECAY_CLIP, 1 - bn_momentum) 

 

            lr_op = tf.compat.v1.summary.scalar('learning_rate', learning_rate) 

            batch_op = tf.compat.v1.summary.scalar('batch_number', batch) 

            bn_decay_op = tf.compat.v1.summary.scalar('bn_decay', bn_decay) 

  

            labels_pred, seg_pred, end_points = model.get_model(pointclouds_ph, 

input_label_ph, \ 

                    is_training=is_training_ph, bn_decay=bn_decay, 

cat_num=NUM_CATEGORIES, \ 

                    part_num=NUM_PART_CATS, batch_size=batch_size, 

num_point=point_num, weight_decay=FLAGS.wd) 

 

            # model.py defines both classification net and segmentation net, 

which share the common global feature extractor network. 

            # In model.get_loss, we define the total loss to be weighted sum of 

the classification and segmentation losses. 

            # Here, we only train for segmentation network. Thus, we set weight 

to be 1.0. 

            loss, label_loss, per_instance_label_loss, seg_loss, 

per_instance_seg_loss, per_instance_seg_pred_res  \ 

                = model.get_loss(labels_pred, seg_pred, labels_ph, seg_ph, 1.0, 

end_points) 

 

            total_training_loss_ph = tf.compat.v1.placeholder(tf.float32, 

shape=()) 

            total_testing_loss_ph = tf.compat.v1.placeholder(tf.float32, 

shape=()) 

 

            label_training_loss_ph = tf.compat.v1.placeholder(tf.float32, 

shape=()) 

            label_testing_loss_ph = tf.compat.v1.placeholder(tf.float32, 

shape=()) 

 

            seg_training_loss_ph = tf.compat.v1.placeholder(tf.float32, shape=()) 

            seg_testing_loss_ph = tf.compat.v1.placeholder(tf.float32, shape=()) 

 

            label_training_acc_ph = tf.compat.v1.placeholder(tf.float32, 

shape=()) 

            label_testing_acc_ph = tf.compat.v1.placeholder(tf.float32, shape=()) 

            label_testing_acc_avg_cat_ph = tf.compat.v1.placeholder(tf.float32, 

shape=()) 

 

            seg_training_acc_ph = tf.compat.v1.placeholder(tf.float32, shape=()) 
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            seg_testing_acc_ph = tf.compat.v1.placeholder(tf.float32, shape=()) 

            seg_testing_acc_avg_cat_ph = tf.compat.v1.placeholder(tf.float32, 

shape=()) 

 

            total_train_loss_sum_op = 

tf.compat.v1.summary.scalar('total_training_loss', total_training_loss_ph) 

            total_test_loss_sum_op = 

tf.compat.v1.summary.scalar('total_testing_loss', total_testing_loss_ph) 

 

            label_train_loss_sum_op = 

tf.compat.v1.summary.scalar('label_training_loss', label_training_loss_ph) 

            label_test_loss_sum_op = 

tf.compat.v1.summary.scalar('label_testing_loss', label_testing_loss_ph) 

 

            seg_train_loss_sum_op = 

tf.compat.v1.summary.scalar('seg_training_loss', seg_training_loss_ph) 

            seg_test_loss_sum_op = 

tf.compat.v1.summary.scalar('seg_testing_loss', seg_testing_loss_ph) 

 

            label_train_acc_sum_op = 

tf.compat.v1.summary.scalar('label_training_acc', label_training_acc_ph) 

            label_test_acc_sum_op = 

tf.compat.v1.summary.scalar('label_testing_acc', label_testing_acc_ph) 

            label_test_acc_avg_cat_op = 

tf.compat.v1.summary.scalar('label_testing_acc_avg_cat', 

label_testing_acc_avg_cat_ph) 

 

            seg_train_acc_sum_op = 

tf.compat.v1.summary.scalar('seg_training_acc', seg_training_acc_ph) 

            seg_test_acc_sum_op = tf.compat.v1.summary.scalar('seg_testing_acc', 

seg_testing_acc_ph) 

            seg_test_acc_avg_cat_op = 

tf.compat.v1.summary.scalar('seg_testing_acc_avg_cat', 

seg_testing_acc_avg_cat_ph) 

 

            train_variables = tf.compat.v1.trainable_variables() 

 

            trainer = tf.compat.v1.train.AdamOptimizer(learning_rate) 

            train_op = trainer.minimize(loss, var_list=train_variables, 

global_step=batch) 

 

        saver = tf.compat.v1.train.Saver() 

 

        config = tf.compat.v1.ConfigProto() 

        config.gpu_options.allow_growth = True 
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        config.allow_soft_placement = True 

        sess = tf.compat.v1.Session(config=config) 

         

        init = tf.compat.v1.global_variables_initializer() 

        sess.run(init) 

 

        train_writer = tf.compat.v1.summary.FileWriter(SUMMARIES_FOLDER + 

'/train', sess.graph) 

        test_writer = tf.compat.v1.summary.FileWriter(SUMMARIES_FOLDER + '/test') 

        print(train_writer) 

        train_file_list = provider.getDataFiles(TRAINING_FILE_LIST) 

        num_train_file = len(train_file_list) 

        test_file_list = provider.getDataFiles(TESTING_FILE_LIST) 

        num_test_file = len(test_file_list) 

 

        fcmd = open(os.path.join(LOG_STORAGE_PATH, 'cmd.txt'), 'w') 

        fcmd.write(str(FLAGS)) 

        fcmd.close() 

 

        # write logs to the disk 

        flog = open(os.path.join(LOG_STORAGE_PATH, 'log.txt'), 'w') 

 

        def train_one_epoch(train_file_idx, epoch_num): 

            is_training = True 

 

            for i in range(num_train_file): 

                cur_train_filename = os.path.join(hdf5_data_dir, 

train_file_list[train_file_idx[i]]) 

                printout(flog, 'Loading train file ' + cur_train_filename) 

 

                cur_data, cur_labels, cur_seg = 

provider.loadDataFile_with_seg(cur_train_filename) 

                cur_data, cur_labels, order = provider.shuffle_data(cur_data, 

np.squeeze(cur_labels)) 

                cur_seg = cur_seg[order, ...] 

 

                cur_labels_one_hot = convert_label_to_one_hot(cur_labels) 

 

                num_data = len(cur_labels) 

                num_batch = num_data // batch_size 

 

                total_loss = 0.0 

                total_label_loss = 0.0 

                total_seg_loss = 0.0 

                total_label_acc = 0.0 
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                total_seg_acc = 0.0 

 

                for j in range(num_batch): 

                    begidx = j * batch_size 

                    endidx = (j + 1) * batch_size 

 

                    feed_dict = { 

                            pointclouds_ph: cur_data[begidx: endidx, ...],  

                            labels_ph: cur_labels[begidx: endidx, ...],  

                            input_label_ph: cur_labels_one_hot[begidx: endidx, 

...],  

                            seg_ph: cur_seg[begidx: endidx, ...], 

                            is_training_ph: is_training,  

                            } 

 

                    _, loss_val, label_loss_val, seg_loss_val, 

per_instance_label_loss_val, \ 

                            per_instance_seg_loss_val, label_pred_val, 

seg_pred_val, pred_seg_res \ 

                            = sess.run([train_op, loss, label_loss, seg_loss, 

per_instance_label_loss, \ 

                            per_instance_seg_loss, labels_pred, seg_pred, 

per_instance_seg_pred_res], \ 

                            feed_dict=feed_dict) 

 

                    per_instance_part_acc = np.mean(pred_seg_res == 

cur_seg[begidx: endidx, ...], axis=1) 

                    average_part_acc = np.mean(per_instance_part_acc) 

 

                    total_loss += loss_val 

                    total_label_loss += label_loss_val 

                    total_seg_loss += seg_loss_val 

                     

                    per_instance_label_pred = np.argmax(label_pred_val, axis=1) 

                    total_label_acc += np.mean(np.float32(per_instance_label_pred 

== cur_labels[begidx: endidx, ...])) 

                    total_seg_acc += average_part_acc 

 

                total_loss = total_loss * 1.0 / num_batch 

                total_label_loss = total_label_loss * 1.0 / num_batch 

                total_seg_loss = total_seg_loss * 1.0 / num_batch 

                total_label_acc = total_label_acc * 1.0 / num_batch 

                total_seg_acc = total_seg_acc * 1.0 / num_batch 
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                lr_sum, bn_decay_sum, batch_sum, train_loss_sum, 

train_label_acc_sum, \ 

                        train_label_loss_sum, train_seg_loss_sum, 

train_seg_acc_sum = sess.run(\ 

                        [lr_op, bn_decay_op, batch_op, total_train_loss_sum_op, 

label_train_acc_sum_op, \ 

                        label_train_loss_sum_op, seg_train_loss_sum_op, 

seg_train_acc_sum_op], \ 

                        feed_dict={total_training_loss_ph: total_loss, 

label_training_loss_ph: total_label_loss, \ 

                        seg_training_loss_ph: total_seg_loss, 

label_training_acc_ph: total_label_acc, \ 

                        seg_training_acc_ph: total_seg_acc}) 

 

                train_writer.add_summary(train_loss_sum, i + epoch_num * 

num_train_file) 

                train_writer.add_summary(train_label_loss_sum, i + epoch_num * 

num_train_file) 

                train_writer.add_summary(train_seg_loss_sum, i + epoch_num * 

num_train_file) 

                train_writer.add_summary(lr_sum, i + epoch_num * num_train_file) 

                train_writer.add_summary(bn_decay_sum, i + epoch_num * 

num_train_file) 

                train_writer.add_summary(train_label_acc_sum, i + epoch_num * 

num_train_file) 

                train_writer.add_summary(train_seg_acc_sum, i + epoch_num * 

num_train_file) 

                train_writer.add_summary(batch_sum, i + epoch_num * 

num_train_file) 

                print("==========================================================

=========") 

 

                printout(flog, '\tTraining Total Mean_loss: %f' % total_loss) 

                printout(flog, '\t\tTraining Label Mean_loss: %f' % 

total_label_loss) 

                printout(flog, '\t\tTraining Label Accuracy: %f' % 

total_label_acc) 

                printout(flog, '\t\tTraining Seg Mean_loss: %f' % total_seg_loss) 

                printout(flog, '\t\tTraining Seg Accuracy: %f' % total_seg_acc) 

 

        def eval_one_epoch(epoch_num): 

            is_training = False 

 

            total_loss = 0.0 

            total_label_loss = 0.0 
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            total_seg_loss = 0.0 

            total_label_acc = 0.0 

            total_seg_acc = 0.0 

            total_seen = 0 

 

            total_label_acc_per_cat = 

np.zeros((NUM_CATEGORIES)).astype(np.float32) 

            total_seg_acc_per_cat = np.zeros((NUM_CATEGORIES)).astype(np.float32) 

            total_seen_per_cat = np.zeros((NUM_CATEGORIES)).astype(np.int32) 

 

            for i in range(num_test_file): 

                cur_test_filename = os.path.join(hdf5_data_dir, 

test_file_list[i]) 

                printout(flog, 'Loading test file ' + cur_test_filename) 

 

                cur_data, cur_labels, cur_seg = 

provider.loadDataFile_with_seg(cur_test_filename) 

                cur_labels = np.squeeze(cur_labels) 

 

                cur_labels_one_hot = convert_label_to_one_hot(cur_labels) 

 

                num_data = len(cur_labels) 

                num_batch = num_data // batch_size 

 

                for j in range(num_batch): 

                    begidx = j * batch_size 

                    endidx = (j + 1) * batch_size 

                    feed_dict = { 

                            pointclouds_ph: cur_data[begidx: endidx, ...],  

                            labels_ph: cur_labels[begidx: endidx, ...],  

                            input_label_ph: cur_labels_one_hot[begidx: endidx, 

...],  

                            seg_ph: cur_seg[begidx: endidx, ...], 

                            is_training_ph: is_training,  

                            } 

 

                    loss_val, label_loss_val, seg_loss_val, 

per_instance_label_loss_val, \ 

                            per_instance_seg_loss_val, label_pred_val, 

seg_pred_val, pred_seg_res \ 

                            = sess.run([loss, label_loss, seg_loss, 

per_instance_label_loss, \ 

                            per_instance_seg_loss, labels_pred, seg_pred, 

per_instance_seg_pred_res], \ 

                            feed_dict=feed_dict) 
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                    per_instance_part_acc = np.mean(pred_seg_res == 

cur_seg[begidx: endidx, ...], axis=1) 

                    average_part_acc = np.mean(per_instance_part_acc) 

 

                    total_seen += 1 

                    total_loss += loss_val 

                    total_label_loss += label_loss_val 

                    total_seg_loss += seg_loss_val 

                     

                    per_instance_label_pred = np.argmax(label_pred_val, axis=1) 

                    total_label_acc += np.mean(np.float32(per_instance_label_pred 

== cur_labels[begidx: endidx, ...])) 

                    total_seg_acc += average_part_acc 

 

                    for shape_idx in range(begidx, endidx): 

                        total_seen_per_cat[cur_labels[shape_idx]] += 1 

                        total_label_acc_per_cat[cur_labels[shape_idx]] += 

np.int32(per_instance_label_pred[shape_idx-begidx] == cur_labels[shape_idx]) 

                        total_seg_acc_per_cat[cur_labels[shape_idx]] += 

per_instance_part_acc[shape_idx - begidx] 

 

            total_loss = total_loss * 1.0 / total_seen 

            total_label_loss = total_label_loss * 1.0 / total_seen 

            total_seg_loss = total_seg_loss * 1.0 / total_seen 

            total_label_acc = total_label_acc * 1.0 / total_seen 

            total_seg_acc = total_seg_acc * 1.0 / total_seen 

 

            test_loss_sum, test_label_acc_sum, test_label_loss_sum, 

test_seg_loss_sum, test_seg_acc_sum = sess.run(\ 

                    [total_test_loss_sum_op, label_test_acc_sum_op, 

label_test_loss_sum_op, seg_test_loss_sum_op, seg_test_acc_sum_op], \ 

                    feed_dict={total_testing_loss_ph: total_loss, 

label_testing_loss_ph: total_label_loss, \ 

                    seg_testing_loss_ph: total_seg_loss, label_testing_acc_ph: 

total_label_acc, seg_testing_acc_ph: total_seg_acc}) 

 

            test_writer.add_summary(test_loss_sum, (epoch_num+1) * 

num_train_file-1) 

            test_writer.add_summary(test_label_loss_sum, (epoch_num+1) * 

num_train_file-1) 

            test_writer.add_summary(test_seg_loss_sum, (epoch_num+1) * 

num_train_file-1) 

            test_writer.add_summary(test_label_acc_sum, (epoch_num+1) * 

num_train_file-1) 
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            test_writer.add_summary(test_seg_acc_sum, (epoch_num+1) * 

num_train_file-1) 

 

            printout(flog, '\tTesting Total Mean_loss: %f' % total_loss) 

            printout(flog, '\t\tTesting Label Mean_loss: %f' % total_label_loss) 

            printout(flog, '\t\tTesting Label Accuracy: %f' % total_label_acc) 

            printout(flog, '\t\tTesting Seg Mean_loss: %f' % total_seg_loss) 

            printout(flog, '\t\tTesting Seg Accuracy: %f' % total_seg_acc) 

 

            for cat_idx in range(NUM_CATEGORIES): 

                if total_seen_per_cat[cat_idx] > 0: 

                    printout(flog, '\n\t\tCategory %s Object Number: %d' % 

(all_obj_cats[cat_idx][0], total_seen_per_cat[cat_idx])) 

                    printout(flog, '\t\tCategory %s Label Accuracy: %f' % 

(all_obj_cats[cat_idx][0], 

total_label_acc_per_cat[cat_idx]/total_seen_per_cat[cat_idx])) 

                    printout(flog, '\t\tCategory %s Seg Accuracy: %f' % 

(all_obj_cats[cat_idx][0], 

total_seg_acc_per_cat[cat_idx]/total_seen_per_cat[cat_idx])) 

 

        if not os.path.exists(MODEL_STORAGE_PATH): 

            os.mkdir(MODEL_STORAGE_PATH) 

 

        for epoch in range(TRAINING_EPOCHES): 

            printout(flog, '\n<<< Testing on the test dataset ...') 

            eval_one_epoch(epoch) 

 

            printout(flog, '\n>>> Training for the epoch %d/%d ...' % (epoch, 

TRAINING_EPOCHES)) 

 

            train_file_idx = np.arange(0, len(train_file_list)) 

            np.random.shuffle(train_file_idx) 

 

            train_one_epoch(train_file_idx, epoch) 

 

            if (epoch+1) % 10 == 0: 

                cp_filename = saver.save(sess, os.path.join(MODEL_STORAGE_PATH, 

'epoch_' + str(epoch+1)+'.ckpt')) 

                printout(flog, 'Successfully store the checkpoint model into ' + 

cp_filename) 

 

            flog.flush() 

 

        flog.close() 

         



InvisiFall 93 

if __name__=='__main__': 

    train() 
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Appendix D: 

# Class autoencoder_mdl, compute_metric, function proposed_oversampling in 

data_preproc are originally coded by Dr Feng Jin et al from 

https://github.com/radar-lab/mmfall 

import serial 
import time 
import numpy as np 
import pyqtgraph as pg 
from pyqtgraph.Qt import QtGui 
import matplotlib.pyplot as plt 
import serial 
import time 
import numpy as np 
import pyqtgraph as pg 
from pyqtgraph.Qt import QtGui 
import sys 
from PyQt5 import QtGui, QtWidgets, QtCore 
from pyqtgraph.opengl import GLViewWidget, GLScatterPlotItem 
import csv 
import pandas as pd 
import argparse, os    

import random as rn 
import tensorflow as tf 
from keras import backend as K 
from keras import optimizers 
from keras.layers import Input, Dense, Flatten, Lambda, Concatenate, Reshape, \ 
    TimeDistributed, LSTM, RepeatVector, SimpleRNN, Activation 
from keras.models import Model, load_model 
from keras.callbacks import TensorBoard 
from keras.losses import mse 
from keras.utils import plot_model 
from scipy.signal import find_peaks 
#from sklearn.metrics import confusion_matrix 
import pandas as pd 
from tensorflow.keras import layers 
from scipy.signal import butter, filtfilt 
import glob 
import subprocess 
 
from keras.layers import Layer 
from tensorflow.python.framework.ops import disable_eager_execution 
 
disable_eager_execution() 
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class data_preproc: 
    def __init__(self): 
        self.frames_per_pattern = 20 
        self.points_per_frame = 64 
        self.features_per_point = 4 
        self.split_ratio = 0.8 
        tilt_angle = -10.0 
        self.height = 2 
        self.rotation_matrix = np.array([[1.0, 0.0, 0.0], 
                                         [0.0, np.cos(np.deg2rad(tilt_angle)), -

np.sin(np.deg2rad(tilt_angle))], 
                                         [0.0, np.sin(np.deg2rad(tilt_angle)), 

np.cos(np.deg2rad(tilt_angle))]]) 
 
    def load_csv(self, data_frame, anomaly=False): 
        centroidX_his = [] 
        centroidY_his = [] 
        centroidZ_his = [] 
        total_processed_pattern = [] 
 
        df = data_frame 
     
        # Number of frames to process at once 
        frames_batch_size = 20 
 
        # Get unique frame numbers 
        unique_frames = df['Frame Number'].unique() 
 
        num_complete_batches = len(unique_frames) // frames_batch_size 
        # Loop over the complete batches 
        for batch_num in range(num_complete_batches): 
            start = batch_num * frames_batch_size 
            end = start + frames_batch_size 
            frame_numbers = unique_frames[start:end] 
            processed_pattern = []  # This will hold all processed frames in the 

current batch 
 
            for frame_number in frame_numbers: 
                group = df[df['Frame Number'] == frame_number] 
 
                if len(group) > self.points_per_frame: 
                    continue 
 
                centroid = group[['X', 'Y', 'Z']].mean().to_numpy() 
                centroidx = centroid[0] 
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                centroidy = centroid[1] 
                centroidz = centroid[2] 
                results      = np.matmul(self.rotation_matrix, 

np.array([centroidx,centroidy,centroidz])) 
                centroidx    = results[0] 
                centroidy    = results[1] 
                centroidz    = results[2] + self.height 
                 
                centroidX_his.append(centroidx) 
                centroidY_his.append(centroidy) 
                centroidZ_his.append(centroidz) 
                 
                processed_frame = [] 
                for _, row in group.iterrows(): 
                    # Apply rotation and adjust for height 
                    point = row[['X', 'Y', 'Z']].to_numpy() 
                    rotated_point = np.matmul(self.rotation_matrix, row[['X', 

'Y', 'Z']].to_numpy()) 
                    pointX, pointY, pointZ = rotated_point + np.array([0, 0, 

self.height]) 
                     
                    # Calculate deltas 
                    delta_x = pointX - centroidx 
                    delta_y = pointY - centroidy 
                    delta_z = pointZ 
                    delta_D = row['velocity']   
                     
                    # Form the feature vector 
                    feature_vector = [delta_x, delta_y, delta_z, delta_D] 
                    processed_frame.append(feature_vector) 
 
                 
                processed_pattern.append(processed_frame) 
 
            if len(processed_pattern) == frames_batch_size: 
                processed_pattern_oversampled = 

self.proposed_oversampling(processed_pattern) 
                total_processed_pattern.append(processed_pattern_oversampled) 
 
        total_processed_pattern_np = np.array(total_processed_pattern) 
 
        # Split data into training and testing sets 
        split_idx = int(total_processed_pattern_np.shape[0] * self.split_ratio) 
        train_data = total_processed_pattern_np[:split_idx] 
        test_data = total_processed_pattern_np[split_idx:] 
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        if anomaly == False: 
            print("INFO: Total normal motion pattern data shape: " + 

str(total_processed_pattern_np.shape)) 
            print("INFO: Training motion pattern data shape" + 

str(train_data.shape)) 
            print("INFO: Testing motion pattern data shape" + 

str(test_data.shape)) 
            # Return training and testing data along with centroid histories for 

normal dataset 
            return train_data, test_data, centroidZ_his 
        else: 
            # Return processed pattern and centroid histories for anomaly dataset 
            print("INFO: Total inference motion pattern data shape: " + 

str(total_processed_pattern_np.shape)) 
            return total_processed_pattern_np,  centroidZ_his 
     
    def proposed_oversampling(self, processed_pointcloud): 
        # Do data oversampling 
        processed_pointcloud_oversampled = [] 
        for frame in processed_pointcloud: 
            frame_np = np.array(frame) 
             
            # Check if it's empty frame 
            N = self.points_per_frame 
            M = frame_np.shape[0] 
            assert (M != 0), "ERROR: empty frame detected!" 
             
            # Rescale and padding 
            mean        = np.mean(frame_np, axis=0) 
            sigma       = np.std(frame_np, axis=0) 
            frame_np    = np.sqrt(N/M)*frame_np + mean - np.sqrt(N/M)*mean # 

Rescale 
            frame_oversampled = frame_np.tolist() 
            frame_oversampled.extend([mean]*(N-M)) # Padding with mean 
            processed_pointcloud_oversampled.append(frame_oversampled) 
 
        processed_pointcloud_oversampled_np = 

np.array(processed_pointcloud_oversampled) 
         
        assert (processed_pointcloud_oversampled_np.shape[-2] == 

self.points_per_frame), ("ERROR: The new_frame_data has different number of 

points per frame rather than %s!" %(self.points_per_frame))     
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        assert (processed_pointcloud_oversampled_np.shape[-1] == 

self.features_per_point), ("ERROR: The new_frame_data has different feature 

length rather than %s!" %(self.features_per_point))     
 
        return processed_pointcloud_oversampled_np 
 
 
class SamplingLayer(layers.Layer): 
    """Sampling layer for Variational Autoencoder""" 
    def call(self, inputs): 
        z_mean, z_log_var = inputs 
        batch = tf.shape(z_mean)[0] 
        dim1 = tf.shape(z_mean)[1]  # Additional dimensions if present 
        dim2 = tf.shape(z_mean)[2]  # You adjust this based on your specific 

needs 
         
        # Adjust the shape of epsilon based on the shape of your z_mean and 

z_log_var 
        epsilon = tf.keras.backend.random_normal(shape=(batch, dim1, dim2)) 
        return z_mean + tf.exp(0.5 * z_log_var) * epsilon 
 
class autoencoder_mdl: 
    def __init__(self, model_dir): 
        self.model_dir = model_dir 
 
    # Variational Recurrent Autoencoder (HVRAE) 
    def HVRAE_train(self, train_data, test_data): 
        # In one motion pattern we have 
        n_frames       = 20 
        n_points       = 64 
        n_features     = 4 
         
        # Dimension is going down for encoding. Decoding is just a reflection of 

encoding. 
        n_intermidiate    = 64 
        n_latentdim       = 16 
         
        # Define input 
        inputs                  = Input(shape=(n_frames, n_points, n_features)) 
        input_flatten           = TimeDistributed(Flatten(None))(inputs) 
 
        # VAE: q(z|X). Input: motion pattern. Output: mean and log(sigma^2) for 

q(z|X). 
        input_flatten           = TimeDistributed(Dense(n_intermidiate, 

activation='tanh'))(input_flatten) 
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        Z_mean                  = TimeDistributed(Dense(n_latentdim, 

activation=None), name='qzx_mean')(input_flatten) 
        Z_log_var               = TimeDistributed(Dense(n_latentdim, 

activation=None), name='qzx_log_var')(input_flatten) 
         
        Z = SamplingLayer()([Z_mean, Z_log_var]) 
 
        # RNN Autoencoder. Output: reconstructed z. 
        encoder_feature         = SimpleRNN(n_latentdim, activation='tanh', 

return_sequences=False)(Z) 
        decoder_feature         = RepeatVector(n_frames)(encoder_feature) 
        decoder_feature         = SimpleRNN(n_latentdim, activation='tanh', 

return_sequences=True)(decoder_feature) 
        decoder_feature         = Lambda(lambda x: tf.reverse(x, axis=[-

2]))(decoder_feature) 
 
        # VAE: p(X|z). Output: mean and log(sigma^2) for p(X|z). 
        X_latent                = TimeDistributed(Dense(n_intermidiate, 

activation='tanh'))(decoder_feature) 
        pXz_mean                = TimeDistributed(Dense(n_features, 

activation=None))(X_latent) 
        pXz_logvar              = TimeDistributed(Dense(n_features, 

activation=None))(X_latent) 
 
        # Reshape the output. Output: (n_frames, n_points, n_features*2). 
        # In each frame, every point has a corresponding mean vector with length 

of n_features and a log(sigma^2) vector with length of n_features. 
        pXz                     = Concatenate()([pXz_mean, pXz_logvar]) 
        pXz                     = TimeDistributed(RepeatVector(n_points))(pXz) 
        outputs                 = TimeDistributed(Reshape((n_points, 

n_features*2)))(pXz) 
 
        # Build the model 
        self.HVRAE_mdl = Model(inputs, outputs) 
        print(self.HVRAE_mdl.summary()) 
 
        # Calculate HVRAE loss proposed in the paper 
        def HVRAE_loss(y_true, y_pred): 
            batch_size      = K.shape(y_true)[0] 
            n_frames        = K.shape(y_true)[1] 
            n_features      = K.shape(y_true)[-1] 
 
            mean            = y_pred[:, :, :, :n_features] 
            logvar          = y_pred[:, :, :, n_features:] 
            var             = K.exp(logvar) 
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            y_true_reshape  = K.reshape(y_true, (batch_size, n_frames, -1))  
            mean            = K.reshape(mean, (batch_size, n_frames, -1))  
            var             = K.reshape(var, (batch_size, n_frames, -1))  
            logvar          = K.reshape(logvar, (batch_size, n_frames, -1))  
 
            # E[log_pXz] ~= log_pXz 
            log_pXz         = K.square(y_true_reshape - mean)/var 
            log_pXz         = K.sum(0.5*log_pXz, axis=-1) 
             
            # KL divergence between q(z|x) and p(z) 
            kl_loss         = -0.5 * K.sum(1 + Z_log_var - K.square(Z_mean) - 

K.exp(Z_log_var), axis=-1) 
 
            # HVRAE loss is log_pXz + kl_loss 
            HVRAE_loss        = K.mean(log_pXz + kl_loss) # Do mean over batches 
            return HVRAE_loss 
 
        # Define stochastic gradient descent optimizer Adam 
        adam    = optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, 

amsgrad=False) 
        # Compile the model 
        self.HVRAE_mdl.compile(optimizer=adam, loss=HVRAE_loss) 
 
        # Train the model 
        self.HVRAE_mdl.fit(train_data, train_data, # Train on the normal training 

dataset in an unsupervised way 
                epochs=20, 
                batch_size=8, 
                shuffle=False, 
                validation_data=(test_data, test_data), # Testing on the normal 

tesing dataset 
                callbacks=[TensorBoard(log_dir=(self.model_dir))]) 
        self.HVRAE_mdl.save(self.model_dir + 'HVRAE_mdl.h5') 
        print("INFO: Training is done!") 
        

print("*********************************************************************") 
 
    def HVRAE_predict(self, inferencedata):# add reltime centroid z 
        K.clear_session() 
 
        def sampling_predict(args): # Instead of sampling from Q(z|X), sample 

epsilon = N(0,I), z = z_mean + sqrt(var) * epsilon 
            Z_mean, Z_log_var   = args 
            batch_size          = K.shape(Z_mean)[0] 
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            n_frames            = K.int_shape(Z_mean)[1] 
            n_latentdim         = K.int_shape(Z_mean)[2] 
            # For reproducibility, we set the seed=37 
            epsilon             = K.random_normal(shape=(batch_size, n_frames, 

n_latentdim), mean=0., stddev=1.0, seed=None) 
            Z                   = Z_mean + K.exp(0.5*Z_log_var) * epsilon # The 

reparameterization trick 
            return  Z 
 
        # Load saved model 
        model = load_model(self.model_dir + 'HVRAE_mdl_all.h5', compile = False, 

custom_objects={'SamplingLayer': SamplingLayer, 'tf': tf}) 
        adam  = optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, 

amsgrad=False) 
        model.compile(optimizer=adam, loss=mse) 
        print("INFO: Model loaded from " + self.model_dir + 'HVRAE_mdl.h5') 
 
        get_z_mean_model    = Model(inputs=model.input, 

outputs=model.get_layer('qzx_mean').output) 
        get_z_log_var_model = Model(inputs=model.input, 

outputs=model.get_layer('qzx_log_var').output) 
 
        # Numpy version of HVRAE_loss function 
        def HVRAE_loss(y_true, y_pred, Z_mean, Z_log_var): 
            batch_size      = y_true.shape[0] 
            n_frames        = y_true.shape[1] 
            n_features      = y_true.shape[-1] 
 
            mean            = y_pred[:, :, :, :n_features] 
            logvar          = y_pred[:, :, :, n_features:] 
            var             = np.exp(logvar) 
 
            y_true_reshape  = np.reshape(y_true, (batch_size, n_frames, -1))  
            mean            = np.reshape(mean, (batch_size, n_frames, -1))  
            var             = np.reshape(var, (batch_size, n_frames, -1))  
            logvar          = np.reshape(logvar, (batch_size, n_frames, -1))  
 
            # E[log_pXz] ~= log_pXz 
            # log_pXz       = K.square(y_true_reshape-mean)/var + logvar 
            log_pXz         = np.square(y_true_reshape - mean)/var 
            log_pXz         = np.sum(0.5*log_pXz, axis=-1) 
             
            # KL divergence between q(z|x) and p(z) 
            kl_loss         = -0.5 * np.sum(1 + Z_log_var - np.square(Z_mean) - 

np.exp(Z_log_var), axis=-1) 
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            # HVRAE loss is log_pXz + kl_loss 
            HVRAE_loss        = np.mean(log_pXz + kl_loss) # Do mean over batches 
            return HVRAE_loss 
 
        print("INFO: Start to predict...") 
        prediction_history  = [] 
        loss_history        = [] 
        for pattern in inferencedata: 
            pattern             = np.expand_dims(pattern, axis=0) 
            current_prediction  = model.predict(pattern, batch_size=1) 
            predicted_z_mean    = get_z_mean_model.predict(pattern, batch_size=1) 
            predicted_z_log_var = get_z_log_var_model.predict(pattern, 

batch_size=1) 
            current_loss        = HVRAE_loss(pattern, current_prediction, 

predicted_z_mean, predicted_z_log_var) 
            loss_history.append(current_loss) 
        print("INFO: Prediction is done!") 
         
        return loss_history 
 
class compute_metric: 
    def __init__(self): 
        pass 
 
    def detect_falls(self, loss_history, centroidZ_history, threshold): 
        assert len(loss_history) == len(centroidZ_history), "ERROR: The length of 

loss history is different than the length of centroidZ history!" 
        seq_len                 = len(loss_history) 
        win_len                 = 40 # Detection window length on account of 2 

seconds for 20 fps radar rate 
        centroidZ_dropthres     = 1.0 
        i                       = int(win_len/2) 
        detected_falls_idx      = [] 
        # Firstly, detect the fall centers based on the centroidZ drop 
        while i < (seq_len - win_len/2):  
            detection_window_middle  = i 
            detection_window_lf_edge = int(detection_window_middle - win_len/2) 
            detection_window_rh_edge = int(detection_window_middle + win_len/2) 
            # Search the centroidZ drop 
            if centroidZ_history[detection_window_lf_edge] - 

centroidZ_history[detection_window_rh_edge] >= centroidZ_dropthres: 
                detected_falls_idx.append(int(detection_window_middle)) 
            i += 1 
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        # Secondly, if a sequence of fall happen within a window less than 

win_len, we combine these falls into one fall centered at the middle of this 

sequence 
        i = 0 
        processed_detected_falls_idx = [] 
        while i < len(detected_falls_idx): 
            j = i 
            while True: 
                if j == len(detected_falls_idx): 
                    break  
                if detected_falls_idx[j] - detected_falls_idx[i] > win_len: 
                    break 
                j += 1 
            processed_detected_falls_idx.append(int((detected_falls_idx[i] + 

detected_falls_idx[j-1])/2)) 
            i = j 
 
        # Thirdly, find id there is an anomaly level (or loss history) spike in 

the detection window 
        ones_idx                    = 

np.argwhere(np.array(loss_history)>=threshold).flatten() 
        fall_binseq                 = np.zeros(seq_len) 
        fall_binseq[ones_idx]       = 1 
        final_detected_falls_idx    = [] 
        i = 0  
        while i < len(processed_detected_falls_idx): 
            detection_window_middle  = int(processed_detected_falls_idx[i]) 
            detection_window_lf_edge = int(detection_window_middle - win_len/2) 
            detection_window_rh_edge = int(detection_window_middle + win_len/2) 
            if 1 in 

fall_binseq[detection_window_lf_edge:detection_window_rh_edge]: 
                final_detected_falls_idx.append(processed_detected_falls_idx[i]) 
            i += 1 
         
        return final_detected_falls_idx, len(processed_detected_falls_idx) 
 
    def find_tpfpfn(self, detected_falls_idx, gt_falls_idx): 
        n_detected_falls    = len(detected_falls_idx) 
        falls_tp            = [] 
        falls_fp            = [] 
        falls_fn            = list(gt_falls_idx) 
        win_len             = 20 
        for i in range(n_detected_falls): 
            n_gt_falls      = len(falls_fn) 
            j               = 0 
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            while j < n_gt_falls: 
                # Find a gt fall index whose window covers the detected fall 

index, so it's true positive 
                if int(falls_fn[j]-win_len/2) <= detected_falls_idx[i] <= 

int(falls_fn[j]+win_len/2): 
                    # Remove the true positive from the gt_falls_idx list, 

finally only false negative remains 
                    falls_fn.pop(j)   
                    falls_tp.append(i) 
                    break 
                j += 1 
            # Dn not find a gt fall index whose window covers the detected fall 

index, so it's false positive 
            if j == n_gt_falls: 
                falls_fp.append(i) 
 
        return falls_tp, falls_fp, falls_fn 
 
    def cal_roc(self, loss_history, centroidZ_history, gt_falls_idx): 
        n_gt_falls = len(gt_falls_idx) 
        print("How many falls?", n_gt_falls) 
        tpr, fpr = [], [] 
        for threshold in np.arange(0.0, 10.0, 0.1): 
            detected_falls_idx, _           = self.detect_falls(loss_history, 

centroidZ_history, threshold) 
            falls_tp, falls_fp, falls_fn    = 

self.find_tpfpfn(detected_falls_idx, gt_falls_idx) 
            # Save the true positve rate for this threshold. 
            tpr.append(len(falls_tp)/n_gt_falls) 
            # Save the number of false positve, or missed fall detection, for 

this threshold 
            fpr.append(len(falls_fp)) 
        return tpr, fpr 
 
# Change the configuration file name 
configFileName = 'IWR1443_profile_Optimized.cfg' 
csv_file_path = 'radar_data.csv' 
CLIport = {} 
Dataport = {} 
byteBuffer = np.zeros(2**15,dtype = 'uint8') 
byteBufferLength = 0 
 
 
# ------------------------------------------------------------------ 
 



InvisiFall 105 

# Function to configure the serial ports and send the data from 
# the configuration file to the radar 
def serialConfig(configFileName): 
     
    global CLIport 
    global Dataport 
    # Open the serial ports for the configuration and the data ports 
     
    # Raspberry pi 
    CLIport = serial.Serial('COM4', 115200) 
    Dataport = serial.Serial('COM3', 921600) 
     
    # Windows 
    # CLIport = serial.Serial('COM4', 115200) 
    # Dataport = serial.Serial('COM3', 921600) 
 
    # Read the configuration file and send it to the board 
    config = [line.rstrip('\r\n') for line in open(configFileName)] 
    for i in config: 
        CLIport.write((i+'\n').encode()) 
        print(i) 
        time.sleep(0.01) 
         
    return CLIport, Dataport 
 
# ------------------------------------------------------------------ 
 
# Function to parse the data inside the configuration file 
def parseConfigFile(configFileName): 
    configParameters = {} # Initialize an empty dictionary to store the 

configuration parameters 
     
    # Read the configuration file and send it to the board 
    config = [line.rstrip('\r\n') for line in open(configFileName)] 
    for i in config: 
         
        # Split the line 
        splitWords = i.split(" ") 
         
        # Hard code the number of antennas, change if other configuration is used 
        numRxAnt = 4 
        numTxAnt = 3 
         
        # Get the information about the profile configuration 
        if "profileCfg" in splitWords[0]: 
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            startFreq = int(float(splitWords[2])) 
            idleTime = int(splitWords[3]) 
            rampEndTime = float(splitWords[5]) 
            freqSlopeConst = float(splitWords[8]) 
            numAdcSamples = int(splitWords[10]) 
            numAdcSamplesRoundTo2 = 1; 
             
            while numAdcSamples > numAdcSamplesRoundTo2: 
                numAdcSamplesRoundTo2 = numAdcSamplesRoundTo2 * 2; 
                 
            digOutSampleRate = int(splitWords[11]); 
             
        # Get the information about the frame configuration     
        elif "frameCfg" in splitWords[0]: 
             
            chirpStartIdx = int(splitWords[1]); 
            chirpEndIdx = int(splitWords[2]); 
            numLoops = int(splitWords[3]); 
            numFrames = int(splitWords[4]); 
            framePeriodicity = int(splitWords[5]); 
 
             
    # Combine the read data to obtain the configuration parameters            
    numChirpsPerFrame = (chirpEndIdx - chirpStartIdx + 1) * numLoops 
    configParameters["numDopplerBins"] = numChirpsPerFrame / numTxAnt 
    configParameters["numRangeBins"] = numAdcSamplesRoundTo2 
    configParameters["rangeResolutionMeters"] = (3e8 * digOutSampleRate * 1e3) / 

(2 * freqSlopeConst * 1e12 * numAdcSamples) 
    configParameters["rangeIdxToMeters"] = (3e8 * digOutSampleRate * 1e3) / (2 * 

freqSlopeConst * 1e12 * configParameters["numRangeBins"]) 
    configParameters["dopplerResolutionMps"] = 3e8 / (2 * startFreq * 1e9 * 

(idleTime + rampEndTime) * 1e-6 * configParameters["numDopplerBins"] * numTxAnt) 
    configParameters["maxRange"] = (300 * 0.9 * digOutSampleRate)/(2 * 

freqSlopeConst * 1e3) 

    configParameters["maxVelocity"] = 3e8 / (4 * startFreq * 1e9 * (idleTime + 

rampEndTime) * 1e-6 * numTxAnt) 
     
    return configParameters 
    
# ------------------------------------------------------------------ 
 
# Funtion to read and parse the incoming data 
def readAndParseData14xx(Dataport, configParameters): 
    global byteBuffer, byteBufferLength 
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    # Constants 
    OBJ_STRUCT_SIZE_BYTES = 12; 
    BYTE_VEC_ACC_MAX_SIZE = 2**15; 
    MMWDEMO_UART_MSG_DETECTED_POINTS = 1; 
    MMWDEMO_UART_MSG_RANGE_PROFILE   = 2; 
    maxBufferSize = 2**15; 
    magicWord = [2, 1, 4, 3, 6, 5, 8, 7] 
     
    # Initialize variables 
    magicOK = 0 # Checks if magic number has been read 
    dataOK = 0 # Checks if the data has been read correctly 
    frameNumber = 0 
    detObj = {} 
     
    readBuffer = Dataport.read(Dataport.in_waiting) 
    byteVec = np.frombuffer(readBuffer, dtype = 'uint8') 
    byteCount = len(byteVec) 
     
    # Check that the buffer is not full, and then add the data to the buffer 
    if (byteBufferLength + byteCount) < maxBufferSize: 
        byteBuffer[byteBufferLength:byteBufferLength + byteCount] = 

byteVec[:byteCount] 
        byteBufferLength = byteBufferLength + byteCount 
         
    # Check that the buffer has some data 
    if byteBufferLength > 16: 
         
        # Check for all possible locations of the magic word 
        possibleLocs = np.where(byteBuffer == magicWord[0])[0] 
 
        # Confirm that is the beginning of the magic word and store the index in 

startIdx 
        startIdx = [] 
        for loc in possibleLocs: 
            check = byteBuffer[loc:loc+8] 
            if np.all(check == magicWord): 
                startIdx.append(loc) 
                
        # Check that startIdx is not empty 
        if startIdx: 
             
            # Remove the data before the first start index 
            if startIdx[0] > 0 and startIdx[0] < byteBufferLength: 
                byteBuffer[:byteBufferLength-startIdx[0]] = 

byteBuffer[startIdx[0]:byteBufferLength] 
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                byteBuffer[byteBufferLength-startIdx[0]:] = 

np.zeros(len(byteBuffer[byteBufferLength-startIdx[0]:]),dtype = 'uint8') 
                byteBufferLength = byteBufferLength - startIdx[0] 
                 
            # Check that there have no errors with the byte buffer length 
            if byteBufferLength < 0: 
                byteBufferLength = 0 
                 
            # word array to convert 4 bytes to a 32 bit number 
            word = [1, 2**8, 2**16, 2**24] 
             
            # Read the total packet length 
            totalPacketLen = np.matmul(byteBuffer[12:12+4],word) 
             
            # Check that all the packet has been read 
            if (byteBufferLength >= totalPacketLen) and (byteBufferLength != 0): 
                magicOK = 1 
     
    # If magicOK is equal to 1 then process the message 
    if magicOK: 
        # word array to convert 4 bytes to a 32 bit number 
        word = [1, 2**8, 2**16, 2**24] 
         
        # Initialize the pointer index 
        idX = 0 
         
        # Read the header 
        magicNumber = byteBuffer[idX:idX+8] 
        idX += 8 
        version = format(np.matmul(byteBuffer[idX:idX+4],word),'x') 
        idX += 4 
        totalPacketLen = np.matmul(byteBuffer[idX:idX+4],word) 
        idX += 4 
        platform = format(np.matmul(byteBuffer[idX:idX+4],word),'x') 
        idX += 4 
        frameNumber = np.matmul(byteBuffer[idX:idX+4],word) 
        idX += 4 
        timeCpuCycles = np.matmul(byteBuffer[idX:idX+4],word) 
        idX += 4 
        numDetectedObj = np.matmul(byteBuffer[idX:idX+4],word) 
        idX += 4 
        numTLVs = np.matmul(byteBuffer[idX:idX+4],word) 
        idX += 4 
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        # UNCOMMENT IN CASE OF SDK 2 
        #subFrameNumber = np.matmul(byteBuffer[idX:idX+4],word) 
        #idX += 4 
         
        # Read the TLV messages 
        for tlvIdx in range(numTLVs): 
             
            # print('range tlv = ',  tlvIdx ) 
            # word array to convert 4 bytes to a 32 bit number 
            word = [1, 2**8, 2**16, 2**24] 
 
            # Check the header of the TLV message 
            tlv_type = np.matmul(byteBuffer[idX:idX+4],word) 
            idX += 4 
            tlv_length = np.matmul(byteBuffer[idX:idX+4],word) 
            idX += 4 
             
            # Read the data depending on the TLV message 
            if tlv_type == MMWDEMO_UART_MSG_DETECTED_POINTS: 
                             
                # word array to convert 4 bytes to a 16 bit number 
                word = [1, 2**8] 
                tlv_numObj = np.matmul(byteBuffer[idX:idX+2],word) 
                idX += 2 
                tlv_xyzQFormat = 2**np.matmul(byteBuffer[idX:idX+2],word) 
                # print('tlv_xyzQFormat',tlv_xyzQFormat) 
                # print('tlv_numObj = ', tlv_numObj) 
                #os.system('Pause') 
                idX += 2 
                 
                # Initialize the arrays 
                rangeIdx = np.zeros(tlv_numObj,dtype = 'int16') 
                dopplerIdx = np.zeros(tlv_numObj,dtype = 'int16') 
                peakVal = np.zeros(tlv_numObj,dtype = 'int16') 
                x = np.zeros(tlv_numObj,dtype = 'int16') 
                y = np.zeros(tlv_numObj,dtype = 'int16') 
                z = np.zeros(tlv_numObj,dtype = 'int16') 
                 
                for objectNum in range(tlv_numObj): 
                     
                    # Read the data for each object 
                    rangeIdx[objectNum] =  np.matmul(byteBuffer[idX:idX+2],word) 
                    idX += 2 
                    dopplerIdx[objectNum] = np.matmul(byteBuffer[idX:idX+2],word) 
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                    idX += 2 
                    peakVal[objectNum] = np.matmul(byteBuffer[idX:idX+2],word) 
                    idX += 2 
                    x[objectNum] = np.matmul(byteBuffer[idX:idX+2],word) 
                    idX += 2 
                    y[objectNum] = np.matmul(byteBuffer[idX:idX+2],word) 
                    idX += 2 
                    z[objectNum] = np.matmul(byteBuffer[idX:idX+2],word) 
                    idX += 2 
                     
                # Make the necessary corrections and calculate the rest of the 

data 
                rangeVal = rangeIdx * configParameters["rangeIdxToMeters"] 
                dopplerIdx[dopplerIdx > (configParameters["numDopplerBins"]/2 - 

1)] = dopplerIdx[dopplerIdx > (configParameters["numDopplerBins"]/2 - 1)] - 65535 
                dopplerVal = dopplerIdx * 

configParameters["dopplerResolutionMps"] 
                #x[x > 32767] = x[x > 32767] - 65536 
                #y[y > 32767] = y[y > 32767] - 65536 
                #z[z > 32767] = z[z > 32767] - 65536 
                x = x / tlv_xyzQFormat 
                y = y / tlv_xyzQFormat 
                z = z / tlv_xyzQFormat 
                 
                # Store the data in the detObj dictionary 
                detObj = {"numObj": tlv_numObj, "rangeIdx": rangeIdx, "range": 

rangeVal, "dopplerIdx": dopplerIdx, \ 
                          "doppler": dopplerVal, "peakVal": peakVal, "x": x, "y": 

y, "z": z} 
                 
                dataOK = 1              
         
   
        # Remove already processed data 
        if idX > 0 and byteBufferLength > idX: 
            shiftSize = totalPacketLen 
                
            byteBuffer[:byteBufferLength - shiftSize] = 

byteBuffer[shiftSize:byteBufferLength] 
            byteBuffer[byteBufferLength - shiftSize:] = 

np.zeros(len(byteBuffer[byteBufferLength - shiftSize:]),dtype = 'uint8') 
            byteBufferLength = byteBufferLength - shiftSize 
             
            # Check that there are no errors with the buffer length 
            if byteBufferLength < 0: 
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                byteBufferLength = 0 
                 
 
    return dataOK, frameNumber, detObj 
 
 
############################### MAIN #################################### 
 
import tensorflow as tf 
import sys 
import numpy as np 
import pandas as pd 
import pyqtgraph.opengl as gl 
from PyQt5 import QtWidgets, QtCore 
import tensorflow as tf 
import serial 
from pyqtgraph.Qt import QtGui 
import pyqtgraph as pg 
 
 
recent_predictions = [] 
 
current_frame_data = None 
current_frame_number = None 
fall_detected = False 
# Initialize global variables for frame data handling 
current_frame_data = pd.DataFrame() 
current_frame_number = -1 
 
data_processor = data_preproc() 
 
 
#------------------- GUI SET UP -------------------------------------------- 
class RadarGUI(QtWidgets.QMainWindow): 
    def __init__(self, parent=None): 
        super(RadarGUI, self).__init__(parent) 

        self.is_recording = False 
 
        # Set up central widget and layout 
        central_widget = QtWidgets.QWidget() 
        self.setCentralWidget(central_widget) 
        layout = QtWidgets.QVBoxLayout(central_widget) 
 
        # Set up the 3D scatter plot widget and add it to the layout 
        self.scatter_widget = gl.GLViewWidget() 
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        layout.addWidget(self.scatter_widget) 
 
        # Initialize the timer for resetting the fall indicator 
        self.reset_timer = QtCore.QTimer(self) 
        self.reset_timer.setSingleShot(True) 
        self.reset_timer.timeout.connect(self.reset_fall_indicator) 
 
        # Create and add a scatter plot item and a cube frame to the widget 
        self.scatter = gl.GLScatterPlotItem() 
        self.scatter_widget.addItem(self.scatter) 
        cube_lines = self.create_cube(width=5, height=5, depth=3, 

y_translation=2.5) 
        for line_item in cube_lines: 
            self.scatter_widget.addItem(line_item) 
 
        # Configure the camera for an isometric view 
        self.scatter_widget.setCameraPosition(distance=15, elevation=30, 

azimuth=45) 
        self.scatter_widget.opts['center'] = QtGui.QVector3D(-2, -0, -2)  # 

Adjust the 1 to your needs 
        self.scatter_widget.update() 
 
        # Create occupancy grid 
        self.create_occupancy_grid(cube_width=5, cube_height=3, cube_depth=5, 

grid_width=10, grid_height=10, spacing=0.5, cube_y_translation=0) 
 
        # Bottom layout for button and fall indicator 
        bottom_layout = QtWidgets.QHBoxLayout() 
        bottom_layout.addStretch()  # Add a spacer on the left side 
 
        # Create the Start Recording button 
        self.start_recording_button = QtWidgets.QPushButton("Start Detecting") 
        button_size = 250  # Square button size 
        self.start_recording_button.setFixedSize(button_size, button_size) 
        self.start_recording_button.setStyleSheet("QPushButton { font-size: 

18pt; }") 
        bottom_layout.addWidget(self.start_recording_button) 
 
        # Modify the fall detection indicator (label) 
        self.fall_indicator = QtWidgets.QLabel("Monitoring...") 
        self.fall_indicator.setAlignment(QtCore.Qt.AlignCenter) 
        self.fall_indicator.setFixedSize(button_size, button_size) 
        self.fall_indicator.setStyleSheet("QLabel { background-color: green; 

border: 1px solid black; font-size: 18pt; }") 
        bottom_layout.addWidget(self.fall_indicator) 
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        bottom_layout.addStretch()  # Add a spacer on the right side 
 
        # Add the bottom layout to the main vertical layout 
        layout.addLayout(bottom_layout) 
 
        # Connect the button click to the start_recording method 
        self.start_recording_button.clicked.connect(self.start_recording) 
     
################ GUI Functions 
    def start_recording(self): 
        global radar_gui 
        # Toggle the is_recording flag 
        self.is_recording = not self.is_recording 
 
        # Update button text based on the recording state 
        if self.is_recording: 
            self.start_recording_button.setText("Stop Detecting") 
            # control_com_on() 
            # radar_gui.update_fall_indicator(True)  # Indicator turns red 
            print("Fall Detection started.") 
        else: 
            self.start_recording_button.setText("Start Detecting") 
            print("Fall Detection stopped.") 
            # if not radar_gui.reset_timer.isActive(): 
            #     radar_gui.update_fall_indicator(False) 
            # control_com_off() 
 
    def create_occupancy_grid(self, cube_width, cube_height, cube_depth, 

grid_width, grid_height, spacing, cube_y_translation): 
        # Calculate the center of the cube in the x and y dimensions 
        cube_center_x = 0 
        cube_center_y = 2.5 
 
        # The z_position of the grid is the bottom of the cube 
        z_position = cube_y_translation - (cube_height / 2) 
         
        grid_color = (0.5, 0.5, 0.5, 1)  # Light grey color for the grid lines 
        lines = [] 
 
        # Starting point of the grid in the x and y dimensions 
        grid_start_x = cube_center_x - (grid_width / 2) 
        grid_start_y = cube_center_y - (grid_height / 2) 
 
        # Horizontal lines (along the X-axis, varying Y) 
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        for y in np.arange(grid_start_y, grid_start_y + grid_height + spacing, 

spacing): 
            start_vert = np.array([grid_start_x, y, z_position], 

dtype=np.float32) 
            end_vert = np.array([grid_start_x + grid_width, y, z_position], 

dtype=np.float32) 
            lines.append([start_vert, end_vert]) 
 
        # Vertical lines (along the Y-axis, varying X) 
        for x in np.arange(grid_start_x, grid_start_x + grid_width + spacing, 

spacing): 
            start_vert = np.array([x, grid_start_y, z_position], 

dtype=np.float32) 
            end_vert = np.array([x, grid_start_y + grid_height, z_position], 

dtype=np.float32) 
            lines.append([start_vert, end_vert]) 
 
        # Create line plot items for each line in the grid 
        for line_data in lines: 
            line_item = gl.GLLinePlotItem(pos=np.array(line_data), 

color=grid_color, width=1, antialias=True) 
            self.scatter_widget.addItem(line_item) 
 
    def update_scatter_plot(self, points, color=(0, 0, 1, 1), size = 1): 
         
        self.scatter.setData(pos=points, color=color) 
         
    def create_cube(self, width, height, depth, y_translation=0): 
        # Define vertices with an added translation along the y-axis 
        verts = np.array([ 
            [width / 2, height / 2 + y_translation, depth / 2], 
            [width / 2, -height / 2 + y_translation, depth / 2], 
            [-width / 2, -height / 2 + y_translation, depth / 2], 
            [-width / 2, height / 2 + y_translation, depth / 2], 
            [width / 2, height / 2 + y_translation, -depth / 2], 
            [width / 2, -height / 2 + y_translation, -depth / 2], 
            [-width / 2, -height / 2 + y_translation, -depth / 2], 
            [-width / 2, height / 2 + y_translation, -depth / 2] 
        ]) 
         
        # Define the edges of the cube, only outer edges, no diagonals 
        edges = np.array([ 
            [0, 1], [1, 2], [2, 3], [3, 0], # Bottom 
            [4, 5], [5, 6], [6, 7], [7, 4], # Top 
            [0, 4], [1, 5], [2, 6], [3, 7], # Sides 
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        ]) 
         
        # Create an empty list to store the line items 
        cube_lines = [] 
 
        # Create a line plot item for each edge 
        for edge in edges: 
            start_vert = verts[edge[0]] 
            end_vert = verts[edge[1]] 
            line_data = np.array([start_vert, end_vert], dtype=np.float32) 
            line_item = gl.GLLinePlotItem(pos=line_data, color=(1, 0, 0, 1), 

width=2, antialias=True) 
            cube_lines.append(line_item) 
         
        return cube_lines 
    def update_fall_indicator(self, fall_detected): 
        self.fall_indicator.setText("FALL DETECTED" if fall_detected else 

"Monitoring...") 
        self.fall_indicator.setStyleSheet("QLabel { background-color: %s; font-

size: 18pt; }" % ('red' if fall_detected else 'green')) 
        # Start/reset the timer when fall is detected 
        # if fall_detected: 
            # self.reset_timer.start(1000) 
             
    def reset_fall_indicator(self): 
        self.fall_indicator.setText("Monitoring...") 
        self.fall_indicator.setStyleSheet("QLabel { background-color: green; 

font-size: 18pt; }") 
 
 
 
#------------------- UPDATE AND FALL DETECTION  ---------------------------------

----------- 
 
alarm_trigger = False 
window = 20 
current_window_idx = 0 
all_data_frame = [] 
fall_df = pd.DataFrame(columns = ['detected_falls_idx']) 
 
# def control_com_on(): 
#     subprocess.run(["pwsh", "/home/boliclab/Desktop/lightON.ps1"]) 
 
# def control_com_off(): 
#     subprocess.run(["pwsh", "/home/boliclab/Desktop/lightOFF.ps1"]) 
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def update(): 
    global s, recent_predictions, radar_gui, alarm_trigger, window, 

current_window_idx, all_data_frame, fall_df 
    dataOk, frameNumber, detObj = readAndParseData14xx(Dataport, 

configParameters) 
     
    if radar_gui.is_recording: 
 
        if dataOk: 
            # Convert detObj to DataFrame 
            df = pd.DataFrame({ 
                'Frame Number': frameNumber, 
                'X': -np.array(detObj["x"]),  
                'Y': np.array(detObj["y"]), 
                'Z': np.array(detObj["z"]), 
                'velocity': np.array(detObj["doppler"]), 
            }) 
            points = np.vstack((df['X'], df['Y'], df['Z'])).T 
            radar_gui.scatter.setData(pos=points) 
 
            if df.empty: 
                pass 
            else: 
                current_window_idx +=1 
                # print (df) 
                all_data_frame.append(df) 
            # Check every 20 frames = 1s 
            print ('current_window_idx', current_window_idx) 
            # os.system("Pause") 
            if current_window_idx == 100: 
                #Combine data frames together 
                # print ('len(all_data_frame)', len(all_data_frame)) 
                # os.system("Pause") 
                for i in range (len(all_data_frame)):  
                    if i == 0: 
                        current_data_frame = all_data_frame[0] 
                    else: 
                        current_data_frame = pd.concat([current_data_frame, 

all_data_frame[i]], ignore_index= True) 
 
                anomaly_data, centroidZ_his_anomaly = 

data_processor.load_csv(current_data_frame, anomaly=True) 
                centroidZ_his_anomaly_np = np.array(centroidZ_his_anomaly) 
                # Sampling frequency 
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                fs = 20  # 20 frames/second 
                # Cutoff frequency (adjust based on your needs) 
                cutoff = 4  # 5 Hz 
                 
                # Design Butterworth low-pass filter 
                order = 5  # Filter order (adjust based on your needs) 
                nyquist = 0.5 * fs 
                normal_cutoff = cutoff / nyquist 
                b, a = butter(order, normal_cutoff, btype='low', analog=False) 
                 
                # Apply the filter 
                filtered_data = filtfilt(b, a, centroidZ_his_anomaly_np) 
                 
                 
                 
 
                model = autoencoder_mdl(model_dir='D:/1443Boost/') 
                 
                HVRAE_loss_history   = model.HVRAE_predict(anomaly_data) 
                 
                flattened_loss_history = np.array([float(item) for sublist in 

HVRAE_loss_history for item in np.atleast_1d(sublist)]) 
                 
                # Interpolate HVRAE_loss_history to match the length of 

centroidZ_his_anomaly 
                time_steps_original = np.linspace(0, len(flattened_loss_history)-

1, len(flattened_loss_history)) 
                time_steps_target = np.linspace(0, len(flattened_loss_history)-1, 

len(filtered_data)) 
 
                interpolated_loss_history = np.interp(time_steps_target, 

time_steps_original, flattened_loss_history) 
                 
                calculator = compute_metric() 
                 
                threshold = 0.3  #23 #0.3 
                detected_falls_idx, _ = 

calculator.detect_falls(interpolated_loss_history, filtered_data, threshold) 
                print(detected_falls_idx) 
 
                fall_df['detected_falls_idx'] = detected_falls_idx 
                falls_idx_csv_file_exist = 

os.path.isfile('detected_falls_idx.csv') 
                fall_df.to_csv('detected_falls_idx.csv', mode='a', header=not 

falls_idx_csv_file_exist, index=False) 
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                fall_df = pd.DataFrame() 
 
 
                 
                # Set alarm trigger 
                if len(detected_falls_idx) != 0: 
                    alarm_trigger = True 
                else: 
                    alarm_trigger = False 
                     
                current_window_idx = 0 
                all_data_frame = [] 
                detected_falls_idx = [] 
 
 
            if alarm_trigger == True: 
                print("FALL DETECTED") 
                radar_gui.update_fall_indicator(True)  # Indicator turns red 
 
            else: 
                if not radar_gui.reset_timer.isActive(): 
                    radar_gui.update_fall_indicator(False) 
             
 
            # Write to CSV 
            df.to_csv(csv_file_path, mode='a', index=False, header=not 

pd.io.common.file_exists(csv_file_path)) 
 
            points = np.vstack((df['X'], df['Y'], df['Z'])).T 
             
            radar_gui.update_scatter_plot(points, size = 2) 
 
            QtGui.QGuiApplication.processEvents() 
    else: 
        pass 
 
 
# Set up the serial connection and radar configuration parameters 
CLIport, Dataport = serialConfig(configFileName) 
configParameters = parseConfigFile(configFileName) 
 
# Initialize the Qt Application and RadarGUI 
app = QtWidgets.QApplication([]) 
radar_gui = RadarGUI() 
radar_gui.setWindowTitle('3D Radar Scatter Plot') 
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radar_gui.show() 
 
# Connect the update function to a timer for periodic updates 
timer = QtCore.QTimer() 
timer.timeout.connect(update) 
timer.start(33)  # Update every 33 milliseconds 
 
# Start the Qt event loop 
sys.exit(app.exec_()) 
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