

Final Report - InvisiFall

Contactless Fall Detection Using a FMCW mmWave Radar and

HVRAE Machine Learning Model

Rhanmouni, Saad - #8876451 – Mechanical Engineering

Wu, Jerry - #300073359 – Electrical and Computer Engineering

Qureshi, Daniyal - #300284707 – Electrical and Computer Engineering

Wen, Fucheng - #300309097 – Digital Transformation and Innovation

Zaytoun, Ali - #300274341 – Electrical and Computer Engineering

Kaushik, Bhupali– 300372625 – Electrical and Computer Engineering

GNG 5902

Faculty of Engineering – University of Ottawa

To Professor Hanan Anis & Dr. Miodrag Bolic

April 14th , 2024

Acknowledgments

We would like to express our deepest appreciation to Dr. Miodrag Bolic, whose supervision and

expert guidance were the cornerstones of our academic journey and the successful completion of

this project. His dedication to academic excellence and his willingness to impart his vast

knowledge have been a great source of inspiration throughout this endeavor.

Special thanks are owed to our collaborator, Mr. Hasem Mahdavi, CEO at Zodiac Light Waves

Inc. whose unwavering belief in our vision was matched only by his generous contribution of time

and invaluable feedback, significantly shaping the trajectory of our project.

Our sincere gratitude extends to Mr. Ebrahim Ali, Ph.D. candidate, for his invaluable assistance

with the machine learning models that were crucial to this work. His expertise and support played

a significant role in overcoming the challenges we encountered.

We are also particularly grateful to Dr. Reza Argha from Sydney University for his generosity in

sharing the training data for the PointNet Model. This crucial contribution laid a foundational stone

for our research, allowing us to build upon established work with new insights and innovations.

We must also acknowledge the author of the paper that served as a lighthouse for our final

prototype development, Dr. Feng Jin. His research and findings provided us with the

methodological clarity and technical rigor essential for our project's success.

Furthermore, we extend our special thanks to Professor Hanane Anis, whose mentorship and astute

insights from an external perspective were instrumental in refining our project's scope and impact.

Her contributions were a beacon of academic rigor and practical relevance.

To all who have contributed to this journey, either directly or indirectly, we extend our heartfelt

thanks. Your support has not only facilitated this project but also contributed to our collective

personal and professional growth.

InvisiFall 1

Table of Contents

Abstract .. 7

Introduction.. 8

Problem Definition: ... 8

Problem Statement: ... 8

Project Overview: .. 8

Scope and Objectives: ... 8

Notification System Testing: ... 8

Expected Outcomes: .. 8

Benchmarking: .. 9

Comparison of Existing Solutions .. 9

Metrics and Units: ... 11

Linking metrics to needs: .. 11

Assign Marginal and Ideal Values .. 14

Concept Generation and Analysis ... 15

Overall Concept ... 15

Sensing Hardware Concept Generation .. 15

Concept 1: IWR 1443 BOOST FMCW Radar (Texas Instrument): ... 15

Concept 2: Depth Camera & Radar: ... 15

Concept 3: BMP 581 pressure Sensor... 16

Concept 4: Accelerometer ... 16

Concept 5: Sensing floor ... 16

Concept Analyses:... 17

Supporting calculation .. 17

Data Processing Concept Generation: ... 18

Concept 1 CNN1 – Micro-Doppler Signatures ... 18

Concept 2 PointNet- Point Cloud Data Acquisition - Raw Point Cloud .. 18

Concept 3 LSTM2 - Reflection heatmap .. 18

InvisiFall 2

Concept Analysis: ... 18

Methodology 1: ... 18

Methodology 2: ... 18

Methodology 3: ... 18

Outcome: ... 19

Notification System Concept Generation: ... 19

Concept 1: Phone Messaging through Twilio service .. 19

Concept 2: App/Website Notification ... 19

Concept 3: Relay Alarm .. 20

Concept Analyses:... 20

Outcome: ... 20

System Concept Choice: ... 21

Concept Design: .. 21

Concept’s Benefits and Drawbacks ... 21

Client Feedback: .. 22

Detailed Design and First Prototype .. 23

Minimum Viable Product Architecture ... 23

UART Communication protocol with the IWR1443BOOST ... 24

PointNet Neural Networks .. 28

Twilio Notification System ... 32

Event Detection: .. 32

Notification Generation: ... 33

Sending Notifications:... 33

Status Update: ... 33

Output: .. 34

Following The MVP Presentation ... 36

Second Prototyping and Testing .. 39

Fall Detection using PointNet Neural Networks ... 39

1st Iteration: PointNet Neural Networks .. 40

2nd Iteration: Updated PointNet with Resampler for Data Preprocessing: 44

InvisiFall 3

GUI for Fall Detection System ... 46

Notification system update .. 46

Critical product assumptions ... 47

Arduino uno and normal Relay ... 47

USB Relay... 48

USB relay operation process ... 48

Final Prototype... 51

Following Beta Presentation ... 51

Final Machine Learning Model: Hybrid Variational RNN AutoEncoder ... 54

Variational Autoencoder (VAE): .. 55

Integrating a Recurrent Neural Network to the VAE: .. 56

Data Processing and data flow: ... 57

Fall Detection logic and Results: .. 60

Updated GUI for Fall Detection .. 63

Discussion: .. 65

Conclusion ... 68

Future Work ... 69

Appendix.. 71

Appendix A ... 71

Appendix B: .. 80

Appendix C: .. 82

Appendix D: .. 94

References .. 120

InvisiFall 4

List of Figures:

Figure 1: Initial Draft of Concept ... 15

Figure 2: Final Design Concept .. 21

Figure 3: Important parameters in the UART Data Packet Structure ... 21

Figure 4: Minimum Viable Product Architecture .. 23

Figure 5: Illustration of Minimum Viable Prototype Setup .. 23

Figure 6: Correlation Between the Scatter Movement and Saad's Fall. Left: Saad Standing

Right: Saad Falling ... 27

Figure 7: PointNet Architecture (Abdullah K. Alhazmi et al. 2023, p.9) 28

Figure 8: Example of the training data used for object recognition ... 29

Figure 9: Twilio Notification system (Abdullah K. Alhazmi et al. 2023, p.10) 32

Figure 10: Notification System Output ... 35

Figure 11: False fall detections when subject sits fast .. 37

Figure 12: Data Freeze when Subject falls very fast .. 37

Figure 13: Beta Prototype Version .. 39

Figure 14: Reference coordinate translation and rotation from the side wall to the top corner of

the room (Ariyamehr Rezaei et al. 2023, p. 4).. 41

Figure 15: Data Flow during preprocessing of the Occupancy Grid .. 42

Figure 16: Preprocessed Point Cloud into an Occupancy Grid (Left), Input to PointNet Model

(Middle), and Training Results (Right). ... 43

Figure 17: Flow of updated PointNet Data Processing ... 44

Figure 18: Cube shape fed to the PointNet ... 45

Figure 19: Left, GUI showing Fall. Right, GUI Showing Non-Fall ... 46

Figure 20: Arduino nano and relay ... 47

Figure 21: USB relay .. 48

Figure 22: 110V AC power-driven buzzer ... 48

Figure 23: Give Poweshell permission code ... 49

Figure 24: Ps1 file ... 49

Figure 25: Overall Flow of the system with GUI ... 53

InvisiFall 5

Figure 26: The integration of a Recurrent Neural Network (RNN) with a Variational

Autoencoder (VAE) into a sequence-to-sequence modeling framework è Recurrent Autoencoder

RAE (Feng Jin et al.,2022, p.6) .. 56

Figure 27: mmWave Radar IWR1443BOOST used for the Final Design 57

Figure 28: HVRAE Architecture (Feng Jin et al. ,2022, p.7) ... 59

Figure 29: Semi Supervised Model Training Area ... 60

Figure 30: HVRAE Anomalies, and Z centroid shifts change over time for 15 falls recorded

seperate from the data used to train the model. Subject: Ali Zaytoun .. 62

Figure 31: Demo - 30 Falls, real time testing of the trained and tested model. Subject Saad

Rhanmouni .. 63

Figure 32: Updated GUI Interface .. 64

Figure 33: USB Relay and 5V Alarm Prototype .. 64

Figure 34: Interl NUC - NUC5i3RYH MiniComputer ... 65

InvisiFall 6

List of Tables:

Table 2: Product Rating Scale... 9

Table 3: Comparison of Existing Solutions .. 9

Table 4: Metrics and Units .. 11

Table 5: Linking metrics to needs ... 11

Table 6: Assign Marginal and Ideal Values .. 14

Table 7: Concept Analysis .. 17

Table 8: Calculations of the sampling rate ... 17

Table 9: Twilio service analysis. .. 19

Table 10: App/Website Notification analyze .. 19

Table 11: Relay Alarm analyze.. 20

Table 12: Concept Analysis .. 20

Table 13: Client Feedback on Generated Concept ... 22

Table 14: Data structure of the Radar and Extraction Method ... 25

Table 15:Extracted Comma Separated Data from the Radar .. 26

Table 16: Expected Comma Seperated Data from the Radar ... 26

Table 17: Simulation Result.. 30

Table 18: New Client Feedback ... 37

Table 19: Target Specification vs Obtained Specification (Occupancy Grid) 43

Table 20: Target Specification vs Obtained Specification (Resampler) 45

Table 21: Client feedback for notification system .. 46

Table 22: Training data cut, but not denoised yet. Red shows the noise that need to be filtered

and green shows how labels can be grouped .. 51

Table 23: Target Specification vs Obtained Specification ... 52

InvisiFall 7

Abstract

The phenomenon of elderly falls within residential homes presents a pressing challenge,

demanding immediate and efficient response to prevent serious injury or fatality. These incidents

not only threaten the well-being of residents but also impinge upon their confidence in feeling

secure within these facilities. A robust solution could significantly reduce response times and

improve overall safety, thereby making a considerable impact in the field of elderly care.

The core problem we address is the reliable detection of falls among the elderly in a residential

environment. Current mainstream solutions such as wearables with accelerometers and barometers

are hindered by practical limitations — the elderly, especially those with cognitive impairments

like dementia, may forget to wear, charge, or find these devices inconvenient. A viable solution

must therefore be unobtrusive and require minimal interaction from the residents.

To circumvent the limitations of wearable technologies, we propose a novel, contactless detection

system based on radar technology. This approach forgoes cameras to reduce privacy concerns and

employs a radar system to generate a point cloud over a predetermined range. A minicomputer

processes this data using a sequential machine learning algorithm to detect falls. Upon detection,

the system promptly activates an alarm in the home via a relay connection, ensuring immediate

notification without compromising resident privacy or comfort.

Preliminary results indicate that our radar-based system can detect falls with a high degree of

accuracy over 90%. Although quantifiable results regarding response time improvement and fall

detection rates are beyond the scope of this abstract, the radar system shows promise as an effective

alternative to wearables and surveillance-based methods.

The proposed radar-based fall detection system offers a significant advancement in elderly care

technology, respecting privacy while maintaining a high level of accuracy. It lays the groundwork

for future innovation, including fall prevention and vital health sign monitoring. The utilisation of

mmWave technology in this context may herald a new era in non-intrusive resident monitoring,

potentially generalizable to various care settings.

InvisiFall 8

Introduction

Problem Definition:

Design an easy to implement fall detection solution used in residential homes by nurses such that

it is accurate, contactless (non-wearable), camera-free, cost-efficient with instant notifications to

the nurses. It is to be able to accurately discern the elderly subject and detect all types of falls with

no false alarm.

Problem Statement:

In residential settings, falls among the elderly and those with mobility impairments present a

significant health risk, often leading to severe injuries and critical emergencies. Rapid detection

and response to such falls are imperative, yet current solutions often intrude on privacy or require

direct contact, which can be uncomfortable or impractical.

Project Overview:

This project aims to develop an innovative fall detection system that harnesses mmWave FMCW

radar technology. Our objective is to create a non-intrusive, privacy-respecting mechanism that

accurately identifies falls, differentiates them from other movements, and instantly notifies

caregivers, improving response times and outcomes for residents in non-hospital environments.

Scope and Objectives:

Our approach encompasses a comprehensive hardware integration process, establishing seamless

communication between the radar technology and data acquisition systems. We intend to explore

a range of data analysis and machine learning algorithms, seeking to identify the most effective

method for fall detection through extensive testing—including both frame-by-frame and sequential

data analysis.

Notification System Testing:

A critical component of our system is the notification protocol, for which we will test both relay

and text message-based systems. Our aim is to ensure that the chosen method provides reliable

and immediate alerts to facilitate a quick response.

Expected Outcomes:

The anticipated outcome is a fully functional fall detection system with a proven algorithm offering

high accuracy, capable of integrating into existing care infrastructure. By comparing different

models and notification methods, we expect to conclude with a solution that sets a new standard

for fall detection in terms of both efficiency and respect for user privacy.

InvisiFall 9

Benchmarking and Specifications

Benchmarking:

To conduct better benchmark testing, we need to more objectively analyze similar products on the

market. For this reason, we rate similar products on the market from five different aspects in the

table below for analysis.

Table 1: Product Rating Scale

Criteria Contactless Price

(<500$)

Privacy Reliability in

Identifying

falls

Can monitor

Vitals

Points 1/5 1/5 1/5 1/5 1/5

Comparison of Existing Solutions

In this section we put together in a table the ratings and final specs of four different products along

with our researched reviews of it to help us with our benchmarking.

Table 2: Comparison of Existing Solutions

Product Name Ratings Final Specs Comments

SensFloor

4/5 1. Around 4354.11 ~

5079.8 minimum +

Service agreement

cost for annual

maintenance and

regular software

updates + Require

renovating floor to

install on existing

floor.

2. Require 0.5 W/sqm

3. 98% Accuracy

4. Last 20 years

minimum

5. Does not use

camera to monitor

6. Contactless

This has the largest

coverable area despite

the expenses to

deploy the system in a

room. It can detect

fall detection to

slow/fast falls. It can

also set up guide

lights at night for

elders. Overall, it

provides good

accuracy in fall

detection at all places

with minimum

change in the room's

appearance.

AltumView Fall

Detection

4/5 1. $ 299.99 hardware

cost + 0~6.7 cad /

month for its feature

2. Stick Figure is sent

3. Contactless

4. Good accuracy

comparable to the

Provides quite a good

angle of monitoring

(185 degrees). It

implements a video

camera that features

face recognition to

collect statistics.

InvisiFall 10

radar. Numerical

value not found

5. Batteries is not

required

However, it has the

worst privacy among

the 4 products since it

sends stick figures to

its app for monitoring.

UnaliWear Kanega

Smartwatch

3/5 1. $ 149.99 + $ 59.95

monthly plan

2. Response time of

46 seconds

3. Not Contactless

4. Batteries need to be

recharged every 1.5

days

Unlike other

products, this can be

worn at all places. But

it has the shortest

battery lifetime

Although, it comes

extra battery so you

can charge one

battery a day which is

tedious.

Medical Guardian

Mobile 2.0

2/5 1. Not Contactless

2. < 90% accuracy

3. Require charging

every 3~5 days

4. Minimum $

44.95/month + $

10/month for fall

detection service

5. Response time of

24~30 seconds

Although this product

is the cheapest among

the other 3, it only has

a one-way

communication line,

which is inconvenient

in a false alarm

situation. It is also

required to push an

external button if fall

detection service is

not available.

InvisiFall 11

Metrics and Units:

After comparison and investigation, we understood the important indicators required for similar

products to realize their functions and determined the units. We have placed the important

indicators and their units in the following tables.

Table 3: Metrics and Units

Metric Descriptor UNIT

Notification Delay Seconds (s)

Sample Rate needed for

frame detection

Hertz (Hz)

Computation power

requirements

Floating-point operations per second (FLOPS)

Power Consumption Watts (W)

Uptime Hours (h)

Accuracy Percentage (%)

Range Resolution Centimeters

Elevation Resolution degrees

Detection Range Meters

Linking metrics to needs:

After we determined the important indicators required for the product, we related these indicators

to the needs raised by customers and made them into the following table. This can help us analyze

what indicators need to be achieved to fulfill customer needs.

Table 4: Linking metrics to needs

 1 2 3 4 5 6 7

 M

e

t

r

i

c

s

No

tifi

cat

ion

De

lay

Comp

utatio

n

power

requir

ement

s

Po

we

r

con

su

mp

tio

n

Up

Ti

me

A

c

c

u

r

a

c

y

Range

resolutio

n

Detectio

n range

 Needs

Index

1 An Artificial

Intelligence

based fall

detection

solution

 X X X X

InvisiFall 12

2 The solution

should not

use Cameras

and machine

vision

 X X X X

3 The solution

should be

contactless

 X X X X

4 The system

should have

very low lag

time

between

acquisition,

processing

and

notification.

 X X X X X X

5 The system

should have

a very good

coverage

 X X X X

 Machine

learning

algorithm

should be

trained on

distinguishi

ng the

subject

 X X X X

6 Machine

learning

algorithm

should be

trained on

distinguishi

ng a fall

from the

subject

sitting, or

going to bed

 X X X

7 The device

should be

battery free

 X X

InvisiFall 13

8 The solution

should be

24/7

 X X

InvisiFall 14

Assign Marginal and Ideal Values

Based on the analysis of the above tables, we derived a marginal and ideal value for each metric

to achieve customer needs.

Table 5: Assign Marginal and Ideal Values

Metric

ID

Numbe

r

Metric Descriptor UNIT Marginal Values Ideal Values

1 Fall Accuracy Percentage (%)

75 90

2 Sample Rate needed

for frame detection

Hertz (Hz)
100 200

2 Notification Delay Seconds (s) 30 20

7 Range Resolution Centimeters 8 4

4 Power consumption Watts (W) 100 50

9 Detection Range Meters (m) 4 5

5 Uptime Hours (h) 24 24

Our initial goal for the fall detection is set to a relatively low percentage (recommended by our

mentor) since we are testing out new radar technology in a laboratory environment.

According to Nyquist sampling theorem, it is important that we sample the analog signal at least

twice the frequency of the highest component. Hence, for the falls, the highest harmonics are

observed in the range of 100Hz to 200 Hz.

Notification delay of 20-30 seconds seems reasonable and achievable with the existing technology.

This delay is enough for a retirement home caregiver to respond to any fall emergency.

Apart from the above main indicators, secondary metrics provide another way to quantify system

performance, not as critical as the primary indicators.

The range resolution is important in identifying separate objects in the radial direction. The

detection range should be at least 4 meters to fully cover about any standard sized room at the

retirement home.

The least power consumption is always expected but within practicality sense, 50 W is about the

power consumption of the latest GaN based efficient power brick for phones and laptops, setting

our base.

We strive for 24 hrs system uptime due to the critical monitoring nature of the project.

InvisiFall 15

Concept Generation and Analysis

Overall Concept

To start our effective concept hunt, we already had a mutually agreed upon basic abstract idea of

how the system can look like. This proved to be really helpful in guiding us through a relatively

narrow sample space at the final decision-making stage. We propose a radar-based sensing

connected to a windows computer, functioning as the main computational element for processing

the radar data. Then, the fall detection data and some essentials will be stored on a cloud before

they are pushed to a mobile phone. At the same time, we were flexible in exploring other options

that can replace or complement functionality of components discussed hereafter.

Figure 1: Initial Draft of Concept

Sensing Hardware Concept Generation

Concept 1: IWR 1443 BOOST FMCW Radar (Texas Instrument):

The IWR1443 BOOST is a compact FMCW radar sensor from Texas Instruments, renowned for

its accuracy in range and velocity measurements. Its small size and advanced signal processing

make it ideal for automotive and industrial applications. While offering high performance and

versatility, considerations include cost, complexity, and power consumption.

Concept 2: Depth Camera & Radar:

Intel RealSense 3D D435 Camera

The Intel RealSense 3D D435 Camera is a sophisticated depth sensing device designed for various

applications such as robotics, augmented reality, virtual reality, and computer vision. It utilizes

advanced depth perception technology to capture high-resolution depth images and generate

precise 3D spatial data in real-time. With its compact design and versatile functionality, the

RealSense D435 Camera offers developers and researchers a powerful tool for creating immersive

experiences, enhancing navigation systems, and
enabling precise object recognition.

InvisiFall 16

UWB (Novela)

UWB, or Ultra-Wideband, is a novel wireless communication technology that operates across a

broad spectrum of frequencies with very low power for short-range, high-bandwidth data

transmission. Its unique characteristics enable precise positioning and tracking applications,

making it ideal for indoor navigation, asset tracking, and proximity-based services.

Concept 3: BMP 581 pressure Sensor

The pressure sensor, capable of detecting altitude changes with an accuracy of 20 centimeters, is

utilized in smartwatches for fall detection. This sophisticated technology allows for the precise

monitoring of altitude variations, enabling the device to identify potential falls quickly and

accurately, enhancing user safety through timely alerts and responses.

Concept 4: Accelerometer

The accelerometer is another alternative component in smartwatches, that is designed to measure

acceleration forces. This technology enables the detection of sudden movements and changes in

orientation, making it an indispensable feature for fall detection. By analyzing acceleration data,

smartwatches can accurately identify when a user may have fallen, triggering alerts and emergency

responses, when necessary, thereby significantly enhancing user safety and providing peace of

mind.

Concept 5: Sensing floor

Fall detection using sensing floors involves the integration of advanced sensor technologies within

the flooring system to monitor and detect changes in pressure or vibrations that occur when a fall

happens. These floors are equipped with a network of sensors that can distinguish between

everyday activities and unusual events, such as a person falling. Upon detecting a fall, the system

can instantly analyze the data to confirm the event and trigger an appropriate response, such as

alerting caregivers or emergency services.

InvisiFall 17

Concept Analyses:

Table 6: Concept Analysis

Grading is from 0-10

depending on how

close it meets the

client needs

Tar

get

Spe

cifi

cati

on

(W

eig

ht)

Contact

less

Power

Consump

tion

Data

Transmis

sion

Speed

Can

moni

tor

Vital

s

Total

Weigh

ted

Grade

(1.0

Scale)

Concepts

IWR1443BOOST

Radar

 10 10 5 10 0.80

Camera & Radar 10 10 7 0 0.68

BMP 581 – Pressure

Sensor

 0 7 10 10 0.67

Accelerometer 0 7 10 9 0.65

Sensing floor 10 10 9 0 0.76

Final Weighted Grade = (0.4*Data Transmission Speed + 0.3*Contactless+ 0.2*Monitor Vitals

+ 0.1*Power Consumption)/10

Supporting calculation

The table below shows calculations of the sampling rate.

Table 7: Calculations of the sampling rate

Device Parameter

Measured

Typical

Sampling

Rate

Equation

converting

everything to

HZ

Converte

d Rate

IWR1443BOOST

Radar

Distance,

velocity, angle

Frame

duration is

50ms**

1 / 0.05 s = 20

Hz

20 Hz

Camera &

Radar

Camera Spatial details 30-60 fps 1 fps = 1 Hz 30-60 Hz

 Radar Distance/velocity kHz range 1 kHz = 1000

Hz

~1000Hz

BMP 581 Pressure

Sensor

Atmospheric

pressure changes

480 Hz N/A (already in

Hz)

480 Hz

Accelerometer Acceleration

forces

100 Hz to

several kHz

1 kHz = 1000

Hz

~1000Hz

InvisiFall 18

Sensing Floor Pressure and

vibrations

10 Hz to

over 100 Hz

N/A (already in

Hz)

10-100 Hz

Data Processing Concept Generation:

Concept 1 CNN1 – Micro-Doppler Signatures Accuracy 98.7%:

Utilizes micro-Doppler signatures to classify movements with high accuracy. Its strength

in processing spatial-temporal data makes it a strong candidate for detecting falls through the

analysis of movement patterns.

Concept 2 PointNet- Point Cloud Data Acquisition - Raw Point Cloud Accuracy 99.5%:

Excelling in processing 3D point cloud data, PointNet offers remarkable accuracy.

However, its reliance on 3D spatial data might limit its direct applicability to fall detection without

additional sensors or setups.

Concept 3 LSTM2 - Reflection heatmap Accuracy 80%:

Focuses on capturing temporal patterns through reflection heatmaps, potentially useful in

analyzing changes over time. Its lower accuracy compared to the others might be a consideration,

but its ability to process time-series data could be adapted for fall detection scenarios.

Concept Analysis:

Given the evaluation of LSTM's lower accuracy for fall detection, focusing on either CNN

or PointNet offers more promising methodologies. Here are three ways on deploying these

methodologies approach for employing these models:

Methodology 1:

Leverage pre-processed radar data, further refining it for compatibility with 1D

Convolutional Neural Networks (CNNs). This process involves integrating Max Pooling (MP) and

Fully Connected (FC) layers to enhance the model's ability to interpret the data effectively. Utilize

 Python for the development and implementation of this methodology, ensuring that the

data is optimally structured for the CNN's analysis.

Methodology 2:

Directly extract raw data from radar sensors, designed to be processed by CNN models.

This approach prioritizes the raw, unaltered characteristics of the data, aiming to maximize the

CNN's potential in extracting meaningful patterns directly from the source. The implementation,

conducted in Python, focuses on harnessing the CNN's power without the intermediate step of data

pre-processing.

Methodology 3:

InvisiFall 19

Apply pre-processed radar data within the PointNet framework. This strategy takes

advantage of advanced capabilities in handling complex spatial data, translating the pre-processed

inputs into a format that PointNet can analyze effectively. Python serves as the programming

language of choice, facilitating the integration of radar data with PointNet's neural network

architecture.

Outcome:

For our MVP we will be pursuing Methodology 3, this choice was made because the data

extracted from the IWR1443BOOST is point cloud, and this data processing method has the

highest accuracy for it.

1CNN = Convolutional Neural Network. 2LSTM = Long Short-Term Memory

Notification System Concept Generation:

Concept 1: Phone Messaging through Twilio service

Table 8: Twilio service analysis.

Pros

Cons

- High delivery success rate

- Requires cellular network

availability

- Can reach users without internet access

- Potential for SMS delays

- Service is robust and uses reliable cloud

infrastructure

- May incur costs per message

Concept 2: App/Website Notification

Table 9: App/Website Notification analyze

Pros Cons

- Can provide interactive content and

instructions

- Requires internet connectivity

- Instant delivery when connected - Dependent on user having the app/website

open

- Can be customized for user experience - Notifications can be missed if device is off

or app is closed

InvisiFall 20

Concept 3: Relay Alarm

Table 10: Relay Alarm analyze

Pros Cons

- Immediate local notifications - Small range of effectiveness

- Independent of external networks - Will not notify remote caregivers

- Highly audible notification

- Requires maintenance for the Hardware

Concept Analyses:

Table 11: Concept Analysis

Grading is from 0-10 depending

on how close it meets the client

needed

T

ar

ge

t

S

pe

ci

fi

ca

ti

o

n

User-

Friendl

y

Ease

of

Impl

eme

ntati

on

Data

Trans

missi

on

Speed

Netw

ork

Error

s

Total

Weight

ed

Grade

(1.0

Scale)

Concepts

Phone Messaging through

Twilio service.

 10 10 10 8 0.95

App/Website Notification 10 8 10 8 0.93

Relay Alarm 10 8 10 10 0.98

Final Weighted Grade = (0.5*Data Transmission Speed + 0.25*Network Errors+

0.15*User-Friendly+ 0.10*Ease of Implementation)/10

Outcome:

Our team has decided to implement the Twilio messaging notification system due to the

incomplete information currently available regarding the relay system, pending a more thorough

concept review by the client. This decision was made after careful consideration, noting that the

Twilio system and the relay alarm both accrued an equivalent total score in our assessment.

InvisiFall 21

System Concept Choice:

FMCW Radar (IWR1443) ➔ Raspberry Pi 3B : PointNet NN Twilio Phone Notification

Concept Design:

➔ Rasberry Pi 3B will be collecting data from the FMCW Radar (IWR1443).

➔ The Data processing will be done using PoinNet Neural network, since this one

achieved the highest Accuracy.

➔ Finally, our notification system will be done via Twillio cloud network since it’s the

fastest, easiest, and most reliable solution for transmitting Alerts.

Figure 2: Final Design Concept

Figure 3: Important parameters in the UART Data Packet Structure

Concept’s Benefits and Drawbacks

Naturally, this concept was selected as it promises to meet most of the target specifications.

Starting from the front end, the radar, FMCW type, and especially from the mmWave radar product

line from Texas Instruments, can output high speed raw ADC data (37.5 Msps) over LVDS,

InvisiFall 22

providing sub-millimeter precision positional and velocity data, helping us to achieve high fall

detection accuracy. For now, as the first stage we will test the radar with UART needing only USB

to connect with Laptop. It consumes very little power during normal operation (<12.5W Max),

mainly because it uses microstrip antenna arrays and an efficient processor. The powerful laptop

aids us to quickly process, visualize and then notify over text.

Benefit:

Our hardware is easily capable of supporting the high data scanning rate and hence more accurate

fall detection. It can also report accurate locations of multiple detected people in the sensing range.

Drawback:

This first testing with UART limits our frame rate to just 20 Hz.

Client Feedback:

Table 12: Client Feedback on Generated Concept

Client Statements Client Needs

I do not want to use text message or any apps as

a way of notification. Since it would work early

on, but as more messages come, people tend to

become reluctant to it and start ignoring.

The alarm system needs to be done in a

hardware sense. Relay is the only

approach from our selected solutions.

Fall detection using radar is only a good

approach because you are reducing my cost (no

additional camera)

Make the solution as cheap as possible

preferably below the 1000$ mark.

Although concerned about accuracy, the

PointNet you introduced should suffice for the

fall events.

 Verify the Training and Validation loss,

as well as Training and Validation

Accuracy of the Neural Network.

The relay alarm system should not disturb other

elders to reduce unnecessary attention.

The alarm should only be triggered in the

center room.

The form factor of the entire assembly should be

compact as well as appealing (Merge well in the

room setting).

Design a Package for the Full assembly

using computer aided design.

InvisiFall 23

Detailed Design and First Prototype

Minimum Viable Product Architecture

IWR 1443 BOOST RADAR:

To collect data and pass it to the laptop through UART. The point cloud is processed

using the PointNet neural network. If the predicted result detects fall events, and

notification is sent to nurses’ phones through the Twilio system.

Figure 4: Minimum Viable Product Architecture

Laptop is easier to use and debug as processing unit, using laptop for now.

Figure 5: Illustration of Minimum Viable Prototype Setup

InvisiFall 24

UART Communication protocol with the IWR1443BOOST

After meeting with the client, the main change in the global design concept was replacing the

Raspberry Pi with a Windows machine. It was done because in our radar scanning tests, the

Raspberry Pi was processing the data very slowly and sometimes even missed some object

detection points due to this lag. Tests done on the laptop were way better than it, due to more

processing power.

 This change aimed to achieve a higher sampling rate and meeting the client feedback

The UART (Universal Asynchronous Receiver/Transmitter) protocol is widely used in

applications where any peripheral device must be connected to the computer. This protocol is

mainly carried over the standard USB cable or any other serial data transmission media. For

reference, we studied the mmWave family of radars from Texas Instruments to see what basic

communication constitutes, specific to them. As this protocol is asynchronous, the synching of

transmitter and receiver is relied upon the header and footer sections, followed by some padding

if needed. In our case, the most important data required for fall detection and positioning is encoded

in the first two sections of the data packet: ‘Header’ and the ‘Detected Objects’

A Python script extracts the position coordinates (x, y, z) and the attributes (peak value,

Doppler index, and range index) of detected objects from the radar data stream. This is achieved

within the readAndParseData14xx function, which parses the incoming byte stream for data frames

starting with a specific 'magic word', indicating the start of a valid data packet. Once a valid frame

is identified, the script reads the subsequent bytes, which contain the length and type of the data

message (TLV - Type Length Value format).

When the message type corresponds to detected points, the script proceeds to read the

number of objects and the position format (Q-format for fixed-point numbers) followed by looping

through the data for each detected object. It extracts the range index, Doppler index, and peak

value directly as integer values from the byte stream. The x, y, and z coordinates are also extracted

as integers and then converted to floating-point values by dividing by the Q-format factor. The

range index is multiplied by a calculated constant to convert to physical range in meters. Similarly,

Doppler indices are adjusted by the Doppler resolution to give the velocity values. These extracted

values represent the spatial position and the motion characteristics of each detected object within

the radar's field of view, forming the basis for further analysis or visualization.

InvisiFall 25

Table 13: Data structure of the Radar and Extraction Method

Headers 36B Magic Word Frame Number Number of Detected Objects

Detected Objects 12B + X Y Z Peak Value Doppler Index Range Index

Range Profile 8B +

Noise Profile 8B +

Range Azimuth

Heat Map

8B +

Range Doppler

Heat Map

8B +

Status info 32B

Appendix A shows the full python script, below is an explanation on how it establishes the

UART communication with a TI IWR1443BOOST radar sensor to collect and visualize the data:

1. Global Variables and Buffers: It sets up global variables for the serial ports, a buffer to

hold incoming data bytes, and initializes a variable for the length of this buffer.

2. Serial Configuration: The serialConfig function opens two serial ports for sending

configuration commands and receiving data from the radar. It reads a configuration file

line by line and sends these commands to the radar.

3. Parsing Configuration File: parseConfigFile reads the radar configuration parameters

from the same file and calculates various parameters (e.g., range resolution, maximum

range) based on the radar's specifications.

4. Reading and Parsing Data: readAndParseData14xx function is responsible for reading

incoming data from the radar, checking for the 'magic word' that indicates the start of a

valid data frame, parsing the data, and extracting the detected object information like

position and velocity.

5. Data Visualization Setup: The script sets up a PyQt window with pyqtgraph plotting

widgets to visualize the data in real-time. It configures the plot's appearance, axis labels,

and ranges.

6. Updating the Plot: The update function is called periodically by a PyQt timer. It reads

and parses new data from the radar and updates the plot with the positions of detected

objects.

7. Logging Data to CSV: Inside the update function, if new data is available, it creates a

pandas DataFrame and appends it to a CSV file for logging purposes.

8. Running the Application: Finally, the script enters a loop where it continually updates the

plot with new data as it comes in from the radar, effectively providing a real-time

visualization.

InvisiFall 26

The csv data that is the format below is then fed to another script, Appendix 2, which plots

in 3D with reference to the position of the radar.

Table 14:Extracted Comma Separated Data from the Radar

Frame
Numbe
r

Time
[ms] Time[s] X Y Z

RangeId
x

DopplerId
x

PeakVa
l

11 0 0 0.12 0.22 -0.50 12 2 7
11 0 0 0.10 0.34 -0.43 12 3 9
11 0 0 0.12 0.24 -0.49 12 4 5
12 50 0.05 0.36 0 0.59 14 2 8
12 50 0.05 0.37 0 -0.68 15 2 11
12 50 0.05 0.34 0.15 -0.53 14 3 5
12 50 0.05 0.37 0 -0.61 15 3 8
12 50 0.05 0.19 0.05 -0.52 12 4 9
12 50 0.05 0.19 0.18 -0.54 13 4 10
12 50 0.05 0.17 0.33 -0.41 12 5 7
12 50 0.05 0.19 0.32 -0.48 13 5 7
12 50 0.05 0.98 0.55 -0.56 27 7 9
12 50 0.05 0.98 0.63 -0.59 28 7 8
12 50 0.05 0.83 0.64 0.70 27 -8 11
12 50 0.05 0.86 0.65 0.74 28 -8 9
12 50 0.05 -0.37 0 -0.68 16 -2 5

The extracted data above shows the first flaw in how it is actually expected to have a much lower

samplig rate, the duration of the frames shown above is 50ms, the expected is 10ms , this will

affect our sampling because 50ms ➔ 20Hz, meanwhile 10ms➔ 100hz.

The expected exported data is shown is shown in the table below.

Table 15: Expected Comma Seperated Data from the Radar

Frame
Numbe
r

Time
[ms]

Time[s
] X Y Z

RangeId
x

DopplerId
x

PeakVa
l

11 0 0 0.12 0.22 -0.50 12 2 7
11 0 0 0.10 0.34 -0.43 12 3 9
11 0 0 0.12 0.24 -0.49 12 4 5
12 20 0.02 0.36 0 0.59 14 2 8
12 20 0.02 0.37 0 -0.68 15 2 11
12 20 0.02 0.34 0.15 -0.53 14 3 5
12 20 0.02 0.37 0 -0.61 15 3 8

InvisiFall 27

12 20 0.02 0.19 0.05 -0.52 12 4 9
12 20 0.02 0.19 0.18 -0.54 13 4 10
12 20 0.02 0.17 0.33 -0.41 12 5 7
12 20 0.02 0.19 0.32 -0.48 13 5 7
12 20 0.02 0.98 0.55 -0.56 27 7 9
12 20 0.02 0.98 0.63 -0.59 28 7 8
12 20 0.02 0.83 0.64 0.70 27 -8 11
12 20 0.02 0.86 0.65 0.74 28 -8 9
12 20 0.02 -0.37 0 -0.68 16 -2 5

The input data for the second Python script generates a dynamic 3D plot, illustrating the movement

of scatter points in (x, y, z) coordinates, and concurrently records a video of this activity. This

approach allowed us to conduct a comparative analysis with a video captured using an iPhone 11,

showcasing the movement of the scatter points in relation to the observed subject, in this instance,

Saad. The resulting visualization, depicted in the figure below, effectively demonstrates the

correlation between the scatter movement and Saad's fall, providing a clear and intuitive

representation of the subject's spatial dynamics.

Figure 6: Correlation Between the Scatter Movement and Saad's Fall.

Left: Saad Standing

Right: Saad Falling

InvisiFall 28

➔ Please note that this radar is designed to detect only moving objects. As illustrated in the

image on the left, the scatter data predominantly captures the movement of the hands. This is

because, prior to falling, the individual, Saad, primarily moved his hands. However, during the fall,

the radar is able to detect the entire upper body movement, indicating a significant increase in

detected activity. This distinction underscores the radar's capability to differentiate between

varying degrees of motion, effectively highlighting areas of significant movement.

This aspect may be subject to modifications in future iterations of the prototype, particularly if

there is a need to capture larger datasets or achieve greater sensitivity to movement.

Further testing is necessary to determine the precise level of sensitivity required. These

adjustments will be critical to enhancing the system's performance and ensuring it meets the

specific needs of its application, whether for monitoring, detection, or other purposes.

PointNet Neural Networks

In our project, we have harnessed the capabilities of the PointNet architecture to address the

complexities involved in processing raw point cloud data directly. Our objective is to maintain the

integrity of spatial relationships, which is critical for accurate object tracking. Currently, our

PointNet model is trained to classify objects within a predefined set of categories.

However, our ultimate goal is to adapt this model for fall detection by categorizing human postures

into standing, walking, sitting, lying, and falling. Each point in the cloud is characterized by 3D

coordinates, capturing the shape and form of the subject.

Initially, PointNet employs an input transformation network (T-net) shown in red in Figure 7

(Abdullah K. Alhazmi et al. 2023). to normalize the point cloud data. This step is crucial as it

allows the model to become invariant to changes in rotation and translation, enhancing its ability

to learn significant features. The processed data then passes through several 1D convolutional

layers, which are essential for extracting deeper features. These layers are interspersed with batch

normalization and ReLU activations to introduce nonlinearity and aid in the learning process.

Figure 7: PointNet Architecture (Abdullah K. Alhazmi et al. 2023, p.9)

InvisiFall 29

A second T-net aligns the feature space, ensuring the model can generalize across different spatial

orientations. The subsequent convolutional layers, followed by a global max pooling layer, distill

the data into a comprehensive feature vector. This vector is then processed through a multi-layer

perceptron (MLP), which consists of fully connected layers with dropout regularization to mitigate

overfitting.

While our model is adept at classifying common objects, we are still in the process of gathering

enough fall-related data to train it for detecting falls accurately. Once sufficient data is acquired

and the model is trained, we anticipate deploying it on an Nvidia Jetson Nano for real-time fall

detection, leveraging PointNet's ability to classify human postures and generate spatial feature

tracking maps from 3D data.

Figure 8: Example of the training data used for object recognition

After running the python script in Appendix C the following evolution and observations were

noted

Training epoch: 1

Training Loss: 0.245

Validation Loss: 0.238

Training Accuracy: 89.2%

Validation Accuracy: 83.7%

 Observations: Initial training shows promising convergence. High initial accuracy due to

the pre-trained model layers.

Training epoch: 50

Training Loss: 0.190

Validation Loss: 0.185

Training Accuracy: 92.1%

Validation Accuracy: 88.5%

 Observations: Loss continues to decrease steadily. Accuracy has improved, indicating

effective learning.

InvisiFall 30

Training epoch: 100

Training Loss: 0.165

Validation Loss: 0.160

Training Accuracy: 94.3%

Validation Accuracy: 89.0%

 Observations: Model performance is stabilizing. Minor adjustments to hyperparameters

may be needed for further improvements.

Training epoch: 150

Training Loss: 0.148

Validation Loss: 0.135

Training Accuracy: 95.7%

Validation Accuracy: 89.3%

 Observations: The model has begun to plateau, indicating near-maximal learning from

the current feature set.

Training epoch: 200

Training Loss: 0.130

Validation Loss: 0.120

Training Accuracy: 96.5%

Validation Accuracy: 92.0%

 Observations: Further loss minimization is slow, suggesting the onset of diminishing

returns. Considering additional data augmentation to enhance generalization.

Table 16: Simulation Result

Metric Results Expected Remarks

Training Loss 0.130 ≤0.1 Not Achieved

Validation Loss 0.120 ≤0.15 Achieved

Training Accuracy 96.5% ≥99% Not Achieved

Validation Accuracy 92% ≥85% Achieved

Epochs to Converge 200 ≥100 Not Achieved

Note for reader:

Training Loss: This is a measure of the error between the predicted outputs of the neural

network and the actual labels during training. Lower values indicate better performance.

Validation Loss: Like training loss but calculated on a separate validation dataset that the model

has not seen during training. It helps to evaluate the model's ability to generalize.

InvisiFall 31

Training Accuracy: This is the percentage of correct predictions made by the model on the

training dataset. Higher percentages indicate better performance.

Validation Accuracy: This is the accuracy of the model on a separate validation dataset. It is a

good indicator of how well the model will perform on unseen data.

Epochs to Converge: This refers to the number of complete passes through the training dataset

required for the model to reach its optimal performance.

InvisiFall 32

Twilio Notification System

SMS notifications serve as a swift and reliable method for conveying urgent updates, especially in

healthcare contexts such as fall incidents. For this purpose, our system utilizes the Twilio

Application Service, which is designed to facilitate an alert mechanism for falls. As shown in

figure 9 (Abdullah K. Alhazmi et al. 2023).

Figure 9: Twilio Notification system (Abdullah K. Alhazmi et al. 2023, p.10)

Event Detection:

The system starts with monitoring for specific events, such as an elderly person falling. This could

be achieved through various means, such as motion sensors, wearables, or other monitoring

technologies that can detect unusual activity or conditions indicating a fall.

def main():

 #Radar Detection

 if radar_detection():

 # Generate Fall Notification

 notification_message = generate_notification()

 # Check Medical Staff Availability/Status

 if check_medical_staff_availability():

 # Step 4: Send Notification to Available Staff

 send_notification(notification_message)

 # Update Notification Status/Log

 update_notification_status()

InvisiFall 33

Notification Generation:

Once an event is detected, the system immediately generates a notification. This notification is a

message crafted to convey urgency and importance, informing the recipient about the event and

prompting them to take appropriate action. The message typically includes details about the nature

of the event and may advise on next steps or responses.

def generate_notification():

 # Generate notification message

 notification_message = "ALERT: Elderly fall detected! Please respond

immediately."

 return notification_message

Sending Notifications:

With the notification message ready, the system then identifies the recipients who need to be

alerted. These recipients could be medical staff, caregivers, or family members, depending on the

setup. The system sends the notification to all these recipients, ensuring that everyone who needs

to be informed of the event is alerted as quickly as possible.

def send_notification(notification_message):

 # Send notification using Twilio

 medical_staff_phone_numbers = ['+13439882386','+16137904881']

Status Update:

After sending out notifications, the system updates its status. This could involve marking the event

as addressed to avoid duplicate alerts, logging the event and the response for record-keeping, or

triggering a follow-up process to ensure the situation is being handled. This step is crucial for

maintaining the integrity of the monitoring system and ensuring accountability and traceability of

actions taken in response to detected events.

Below is the python function generating the notification:

def update_notification_status():

 # Update notification status/log (dummy function for demonstration)

 print("Notification status updated.")

The system starts with monitoring for specific events, such as an elderly person falling. This could

be achieved through various means, such as motion sensors, wearables, or other monitoring

technologies that can detect unusual activity or conditions indicating a fall.

def main():

 #Radar Detection

 if radar_detection():

InvisiFall 34

 # Generate Fall Notification

 notification_message = generate_notification()

 # Check Medical Staff Availability/Status

 if check_medical_staff_availability():

 # Step 4: Send Notification to Available Staff

 send_notification(notification_message)

 # Step 5: Update Notification Status/Log

 update_notification_status()

Output:

The figure below offers a practical demonstration of the system's operational workflow. The

primary objective of this prototype is to explore methods for circumventing the 'Do Not Disturb'

mode, as indicated by the symbol in the top right corner of the display. Additionally, the image

highlights a potential issue when employing this notification system: if the recipient's device, such

as a nurse's phone, has a low battery and powers off, the effectiveness of the alert system could be

compromised.

This underlines the necessity for incorporating contingency strategies to ensure critical

notifications are reliably delivered, even in scenarios where the primary device may be unavailable

due to power constraints or interruption settings like 'Do Not Disturb.'

InvisiFall 35

Figure 10: Notification System Output

Problem #1: Caregiver

forgot their phone on

“Do not Disturb”

mode.

Problem #2:

Caregiver forgot to

charge their phone.

Proof that the

Notification System

Works!

InvisiFall 36

Following The MVP Presentation

Our team created a demonstration of the minimum viable product (MVP) for our client, Hesam

Mahdavi, on the 22nd of February. This demo was intended to show the operational concept of the

solution in practice.

The demo focused on a method of fall detection that monitors the elevation and velocity of a

subject. The process involves using the least mean square method to filter out noise from the data

frames, followed by comparing the current frame's elevation and velocity values with their

predecessors. If the system identifies simultaneous peaks in both parameters within a single frame,

it interprets this as a fall event.

Formula for residual calculation in least squares fitting:

With:

𝑥𝑖: Independent variable representing time.

𝑦𝑖: Dependant variable representing velocity or position 𝑧.

𝑓: predictive model function.

𝛽: Vector of adjustable parameters so that the sum of the squares of these residuals is minimized

However, this detection method faced several challenges. One major issue was the radar's inability

to process the rapid influx of frames generated during a fall, due to the necessity of preprocessing

each frame. This often led to data freezing and missed detections, as indicated in a specific figure

not detailed here. Additionally, the lack of machine learning algorithms in this initial approach

meant that the system was prone to false alarms, triggered by non-fall activities that also produced

significant elevation and velocity peaks, such as sitting down quickly.

The two figures below showcase the discussed discrepancies:

InvisiFall 37

Figure 11: False fall detections when subject sits fast

Figure 12: Data Freeze when Subject falls very fast

Following this demo, we received new feedback from the client. This feedback likely led to further

refinements and enhancements of the fall detection system, underscoring the iterative nature of

product development and the importance of client input in shaping the final solution.

Table 17: New Client Feedback

Client Statements Client Needs

The radar is capturing fewer points compared to

the data used to train the ML model.

A new radar must be used instead of

IWR1443BOOST.

Data collected does not match elderly movement. Deeper analysis for dynamic elderly

movement through videos and scholar

paper

InvisiFall 38

The amount of data collected is not enough. Contacting other researchers asking them

to share their data set.

“I would like to see your fall detection use our

existing communication system for notification”.

Trigger the communication system using

a single contact USB-controlled relay.

“I hope the external originals are as small as

possible”.

We chose the smaller USB-controlled

relay.

InvisiFall 39

Second Prototyping and Testing

Our beta release closely follows the MVP is its most basic sense. The main changes are the addition

of the new powerful IWR6843ISK radar and a direct USB-controlled relay that drives the

demonstration buzzer load. The radar feeds the detected object points through UART to the

PointNet ML model running on the minicomputer, after which the fall detection output invokes a

PowerShell command to actuate the USB relay. This same output line can be used to trigger

external fall alarm like the relay module in retirement homes.

Figure 13: Beta Prototype Version

Fall Detection using PointNet Neural Networks

In machine learning, particularly when dealing with convolutional networks, it is crucial to

maintain consistency in the input data. Convolutional operations, which are at the heart of many

neural network architectures, including PointNet, require inputs of a uniform shape to apply filters

that detect patterns or features. This uniformity ensures that the learned filters are applicable across

all inputs, facilitating effective feature extraction.

To comply with this requirement in our project, we've employed various techniques to standardize

the number of points in each data frame before feeding it into our machine learning model.

Establishing a constant number of points allows the network to perform convolutions consistently

across the dataset, which is essential for the network to generalize well from the training data to

unseen data. Among the methods tested, down sampling and over sampling have been instrumental

in achieving this consistency. Down sampling involves randomly eliminating points to reduce the

number to the desired threshold, while over sampling involves duplicating existing points until the

threshold is met. By standardizing the number of points, we ensure that each frame is presented to

the model in a format that is conducive to learning and pattern recognition, thereby enhancing the

model's performance and accuracy.

InvisiFall 40

1st Iteration: PointNet Neural Networks

Occupancy Grid PointNet Data Processing:

After our demonstration to the client and the presentation of the PointNet in the MVP report, the

time has come to deploy this machine learning technique for fall detection and integration with the

notification system.

We encountered two primary challenges. Firstly, there was a need for training data. We

successfully overcame this by partnering with Professor Reza from Australia, who was conducting

similar experiments. He generously provided us with his labeled training data from 21 participants

engaged in the 9 following scenarios:

1. Walking

2. Lay Floor

3. Transition

4. LayBed

5. Sit

6. Background

7. SitBed

8. Falling

9. Stand

The second challenge involved data consistency for the PointNet algorithm, as it requires each

frame to contain an equal number of points due to its successive convolution operations. The

solution emerged from a concept used by Dr. Reza, who applied an occupancy grid technique in

his research. This technique ensures all data points are organized within a cube of fixed dimensions,

with each cell in the Point Cloud indicating whether an area is occupied ('1') or unoccupied ('0'),

based on sensor readings.

To generate the occupancy grid from our point cloud data, we adjusted the origin's position using

rotation and translation matrices. This adjustment was necessary because the radar is positioned at

a 2-meter elevation with a 10-degree tilt angle. An initial rotation matrix, R, was applied to the

coordinates to transpose the z and y-axes, situating our data's origin at the upper corner of the

conceptual room, according to Ariyamehr Rezaei et al. (2023):

(

𝑥mount

𝑦mount

𝑧mount

) = 𝑅 × (

𝑥radar

𝑦radar

𝑧radar

)

With R being our rotation matrix shown as:

𝑅 = (
1 0 0
0 0 1
0 −1 0

) .

InvisiFall 41

And (𝑥𝑚𝑜𝑢𝑛𝑡 , 𝑦𝑚𝑜𝑢𝑛𝑡 , 𝑧𝑚𝑜𝑢𝑛𝑡) are the mount reference coordinates calculated from

(𝑥𝑟𝑎𝑑𝑎𝑟 , 𝑦𝑟𝑎𝑑𝑎𝑟 , 𝑧𝑟𝑎𝑑𝑎𝑟) coordinates of the tilted radar around the x -axis.

Figure 14 (Ariyamehr Rezaei et al., 2023) illustrates the radar's initial placement (indicated by the

red box) and its final position within the green box. This demonstrates the translation and rotation

of the coordinate system necessary for the application described in ’Unobtrusive Human Fall

Detection System Using mmWave Radar and Data Driven Methods’.

Figure 14: Reference coordinate translation and rotation from the side wall to the top corner of the room (Ariyamehr

Rezaei et al. 2023, p. 4)

Finally, translation was applied to shift the rotated coordinates to the top-left corner of the

conceptual room, as depicted in the figure above. This was performed in accordance with the

equation provided below according to Ariyamehr Rezaei et al. (2023):

(

𝑥room

𝑦room

𝑧room

) = (
Δ𝑥
Δ𝑦
Δ𝑧

) + (

𝑥mount

𝑦mount

𝑧mount

)

With:

∆𝑥, ∆𝑦, ∆𝑧: the translation in the x, y, and z direction, for the side position ∆𝑥, ∆𝑦, 𝑎𝑛𝑑 ∆𝑧 were

equal to 2.5, 0, and 2 m respectively.

InvisiFall 42

𝑥𝑚𝑜𝑢𝑛𝑡 , 𝑦𝑚𝑜𝑢𝑛𝑡 , 𝑧𝑚𝑜𝑢𝑛𝑡: are the mount reference coordinates.

𝑥𝑟𝑜𝑜𝑚, 𝑦𝑟𝑜𝑜𝑚 , 𝑧𝑟𝑜𝑜𝑚: are the room reference coordinates (showcased in Figure 14), measured by

translating the mount reference coordinates.

After translating the points, the next step was to rescale and translate to occupancy reference

(showcased in Figure 14) within the occupancy grid using the Resolution of the radar by

applying this final transformation, according to Ariyamehr Rezaei et al. (2023):

𝐻𝑒𝑖𝑔ℎ𝑡 𝑂𝑐𝑐𝑢𝑝𝑒𝑛𝑐𝑦 =
1

Resolution
× (𝑍 − 𝑧room)

𝑊𝑖𝑑𝑡ℎ 𝑂𝑐𝑐𝑢𝑝𝑒𝑛𝑐𝑦 =
1

Resolution
× 𝑥room

𝐷𝑒𝑝𝑡ℎ 𝑂𝑐𝑐𝑢𝑝𝑒𝑛𝑐𝑦 =
1

Resolution
× 𝑦room

With:

Z: is the height of the experimental room

Resolution: is the range resolution of the radar used.

𝑥𝑟𝑜𝑜𝑚, 𝑦𝑟𝑜𝑜𝑚 , 𝑧𝑟𝑜𝑜𝑚: are the room reference coordinates, measured by translating the mount

reference coordinates.

𝐻𝑒𝑖𝑔ℎ𝑡 𝑂𝑐𝑐𝑢𝑝𝑒𝑛𝑐𝑦, 𝑊𝑖𝑑𝑡ℎ 𝑂𝑐𝑐𝑢𝑝𝑒𝑛𝑐𝑦, 𝐷𝑒𝑝𝑡ℎ 𝑂𝑐𝑐𝑢𝑝𝑒𝑛𝑐𝑦: are the references of the occupancy grid

(see the red box in Figure 14).

The chart outlines a data preprocessing sequence for the PointNet machine learning algorithm.

Initially, point cloud data is read and processed through a rotation matrix multiplication, which

aligns the data with the desired coordinate system. This is followed by a translation matrix

multiplication, which relocates the data to the upper left corner of the conceptual room, ensuring

uniformity in data positioning. After these geometric transformations, the data, along with its

corresponding labels, is saved to HDF5 files, a format well-suited for handling large datasets.

Finally, the data is converted into an occupancy grid format, which is necessary for the PointNet

algorithm to interpret the spatial occupancy information effectively. This preprocessing sequence

is critical for the proper functioning of the PointNet algorithm, enabling it to accurately detect falls

and trigger the notification system.

Figure 15: Data Flow during preprocessing of the Occupancy Grid

InvisiFall 43

The data fed into the PointNet model is represented as illustrated in the following figure,

showcasing the process of transforming frame data for input into the network:

Figure 16: Preprocessed Point Cloud into an Occupancy Grid (Left), Input to PointNet Model (Middle), and Training

Results (Right).

The model produced exhibited low accuracy and failed to capture the trends present in the input

data effectively.

Table 18: Target Specification vs Obtained Specification (Occupancy Grid)

Specification Expected Obtained

Training Accuracy 90% ~11%

Testing Accuracy 85% ~22%

Fall Detection Accuracy 70% NaN

 Assumption behind the findings:

This built model relied solely on the x, y, and z coordinates for the occupancy grid, proved

inadequate for training and learning from the data trends. This limitation highlighted the need

for incorporating additional features to improve the signal-to-noise ratio (SNR) and capture

the dynamics of velocity.

We recognized that our data processing approach required a significant overhaul. It became

clear that the features fed into the model were insufficient for capturing the complexity and

nuances necessary for accurate trend prediction. To enhance the model's predictive power and

learning capacity, it was necessary to enrich the input data with more descriptive features, such

as SNR and velocity, which are crucial for distinguishing between different types of

movements and environmental contexts.

This pivot in data processing methodology aimed to create a more robust and informative

feature set, thus facilitating a more nuanced understanding of the spatial and temporal patterns

within the point cloud data. The refined approach was expected to lead to improved model

performance, enabling more accurate detection and classification of the events of interest.

InvisiFall 44

2nd Iteration: Updated PointNet with Resampler for Data Preprocessing:

The team has shifted to a new method for processing the data prior to inputting it into the PointNet

model, as illustrated in the flowchart. This method involves two key preprocessing steps:

Down sampling: This step involves randomly removing points from the frame until the

number of points reaches a predefined threshold. This is particularly useful in reducing the density

of point clouds where the number of points is greater than necessary for accurate analysis.

Over sampling: Conversely, if the frame has fewer points than the threshold, this step

duplicates existing points to meet the required number. It ensures consistency in the data fed into

the model, which is crucial for the neural network to learn effectively.

Before the data is sent to PointNet, it undergoes a splitting process where 20% is allocated for

training and the remaining 80% for testing. This split is facilitated by a sklearn code, which likely

refers to the train_test_split function from Scikit-learn, a machine learning library for Python.

The HDF5 file format is used to store the processed data, offering a structured way to maintain

large amounts of data. Within the HDF5 file, there are two subdivisions: one for labels and one for

the actual data. This structure allows the model to train on the data and simultaneously verify the

correctness of the associated labels, which is essential for supervised learning tasks like the one

being performed. This strategic organization of data and labels is pivotal for the model's ability to

learn and make accurate predictions. The figure below showcases the flow of data throughout the

process.

Figure 17: Flow of updated PointNet Data Processing

The revised data preprocessing methodology for feeding into PointNet ensured that all frames were

uniformly structured, with each containing precisely 165 points. Each point in the dataset was

InvisiFall 45

defined by a set of five attributes: the x, y, and z coordinates, along with Velocity and Signal-to-

Noise Ratio (SNR).

Figure 18: Cube shape fed to the PointNet

PointNet Model Training Results

This enhancement in data preparation significantly improved the model's training performance,

achieving a high training accuracy ~91%. It also resulted in a substantial test accuracy of 70%.

The final training epoch recorded the following:

----63-----

mean loss: 0.247678

accuracy: 0.914709

The final testing file recorded the following:

----2-----

eval mean loss: 7037807.438324

eval accuracy: 0.689512

eval avg class acc: 0.689279

Table 19: Target Specification vs Obtained Specification (Resampler)

Specification Expected Obtained

Training Accuracy 90% ~91%

Testing Accuracy 85% ~70%

 Assumption behind the findings:

The radar, IWR 6843 ISK, continued to record data per frame that fell short of the

anticipated total volume. è this resulted in the duplication of points collected and the model

had a hard time identifying the trends because of the lower quality data.

InvisiFall 46

For training the radar's detection capabilities, nine distinct labels representing a range of

activities were utilized to categorize the point cloud data. These labels included: Walking,

Laying on the Floor, Transitional Movements, Laying on Bed, Sitting, Background (no

significant activity), Sitting on Bed, Falling, and Standing. Each label corresponds to a

specific human activity, allowing the radar to learn and differentiate between various

motions and states in the environment it monitors. è all these labels can lead to confusion

of the model if some of them are similar.

GUI for Fall Detection System

In order to visualize the data point a GUI was developed where a red cube was built to delimit the

perimeter of the zone that the radar records and shows the point cloud movement in real time in

3D. Below this visual a square was added, the square is green when no fall is detected and turns to

red when fall occurs and a signal is sent to the relay system at the same time.

Figure 19: Left, GUI showing Fall. Right, GUI Showing Non-Fall

Notification system update

After we met with the client, we summarized his opinions on the notification system and

corresponding solutions, and then we created the following table with this information.

Table 20: Client feedback for notification system

Client Statements Identified Solutions

“I would like to see your fall detection

use our existing communication system

for notification”

Trigger the communication system using

single contact USB-controlled relay

“"I hope the external originals are as

small as possible"”

We chose the smaller USB-controlled

relay

We initially planned to use our notification as Twilio application since it is a user-friendly

application and easy to install. However, subsequent testing revealed several limitations, notably

InvisiFall 47

the challenge of notifying nursing staff if their mobile phones are outside the network coverage

area or switched off.

Hence, we opted for a relay device as an alternative notification system, which operates

independently of such circumstances.

Subsequently, we endeavored to construct the relay using Arduino and made corresponding

connections. However, in response to client feedback, we opted for a USB-based relay, which

offers greater convenience, particularly due to its compact size, making it ideal for notification

purposes. A USB relay facilitates computer-controlled management of external electrical circuits

via USB connectivity, enhancing the efficiency and versatility of the notification system. At the

end since the client wants to be more reliable, so we changed the information reminder to buzzer.

Critical product assumptions

According to the client's specifications, research and discussions have determined the necessity

for a USB based relay of minimal size, capable of interfacing with the relay box provided by the

client. A USB control relay as small as possible triggers the client's notification system. So this

component must execute a relay switch function upon receiving a predefined signal from the radar.

Validation of this functionality requires connecting the relay switch to a buzzer for testing purposes.

Additionally, parameters such as switch-on time (e.g., 5 seconds) will be tested and documented

in subsequent sections.

After confirming the client's requirements, we conducted research and discussions, and then we

designed the following two prototypes:

Arduino uno and normal Relay

The first thing we thought of was buying a smaller Arduino nano and an ordinary relay and

soldering them together. The purpose of Arduino uno is to facilitate us in putting the program into

relay. In our idea, we can achieve the purpose of controlling the relay with code by welding these

two components together.

Figure 20: Arduino nano and relay

Although the connected size of Arduino nano and Normal Relay is very small, they meet client's

requirements. However, we found another prototype that is smaller and does not require welding

work, which is a USB relay. This prototype may be more in line with the client's requirements

InvisiFall 48

USB Relay

To implement the above system. Our core need is to find a suitable Arduino original to

realize the relay switch function. After market research, we found a USB relay that can trigger the

relay switch through the control line of PowerShell. To implement the above system.

Figure 21: USB relay

After conducting tests, we confirmed that this solution is reliable and can be managed via

PowerShell command line. Consequently, to validate the feasibility of our entire system, a buzzer

is required. Following market research, a 110V AC-powered buzzer was selected.

Figure 22: 110V AC power-driven buzzer

USB relay operation process

We have established connectivity between our USB-based relay and the computer system.

The original notification system adds a new feature namely radar anti-fall alarm function. We can

add this device to the relay box provided by the client.

In our project, to configure the relay with the system, adjustments were made within the device

manager. These adjustments included setting the bits per second to 9600, Data bits to 8, and stop

bits to 1.

Subsequently, we accessed the PowerShell to verify the username associated with the device,

recognizing that each computer may have distinct usernames. Additionally, we utilized the

command line 'Set-ExecutionPolicy -Scope CurrentUser -ExecutionPolicy Unrestricted' to grant

PowerShell the necessary permissions.

InvisiFall 49

Figure 23: Give Poweshell permission code

We proceeded to script two distinct command lines for powering the relay ON and OFF.

Afterwards, we created a dedicated directory within the system's user section and saved the scripts,

each with a descriptive name followed by the extension ".ps1".

Figure 24: Ps1 file

Using Python programming, we executed the following code to manage the LED lights of the relay.

import subprocess, sys

import time

p = subprocess.Popen(["powershell.exe", "C:\\Users\\fuche\\lightON.ps1"],

stdout=sys.stdout)

time.sleep(5)

p = subprocess.Popen(["powershell.exe", "C:\\Users\\fuche\\lightOFF.ps1"],

stdout=sys.stdout)

The subprocess function that comes with python allows python files to call ps1 files in specific

folders.

This Python script initially executes the command to open the 'lightON' file, thereby turning the

switch on through a PowerShell command. After a delay of five seconds, it executes another

command to open the 'lightOFF' file, effectively turning the switch off. This sequence simulates

activating and then deactivating the switch via PowerShell commands. This script can be

seamlessly integrated into the main codebase. Upon receiving a specific signal, this segment of

code will execute, triggering the buzzer to start.

InvisiFall 50

The code for switching on the relay:

[Byte[]] $powerOn = 0xA0,0x01,0x01,0xA2

[Byte[]] $powerOff = 0xA0,0x01,0x00,0xA1

$relay = new-Object System.IO.Ports.SerialPort COM4,9600,None,8,one

$relay.Open()

$relay.Write($powerOn, 0, $powerOn.Count)

$relay.Close()

The code for switching OFF the relay:

[Byte[]] $powerOn = 0xA0,0x01,0x01,0xA2

[Byte[]] $powerOff = 0xA0,0x01,0x00,0xA1

$relay = new-Object System.IO.Ports.SerialPort COM4,9600,None,8,one

$relay.Open()

$relay.Write($powerOff, 0, $powerOff.Count)

$relay.Close()

Alternatively, as part of the process, we integrated a power buzzer (AC 110v, 120dB) with the

relay. This configuration ensures that whenever the relay is activated, the buzzer emits an alarm

signal to alert nursing staff. Conversely, the relay's deactivation, facilitated by our pre-processing

code, enables the cessation of the buzzer alarm.

The final product will be a relay switch, a buzzer and a power supply connected in series, and we

can control the buzzer on or off through a python file.

To prove that our notification system based on USB relay is successful, we ran multiple tests with

the python script that triggers the buzzer which returns successful results.

Client Feedback:

Client Statements Client Needs

Test result of around 70% is way too low. Our

subjects are elderlies, we cannot risk a high

chance of unnoticed fall.

The model needs to be improved further to have at

least 90% in the testing.

The current GUI lacks visual friendliness. The

orientation of the point cloud is unclear, and

diagonal lines hinder clarity.

The GUI needs to be updated for better visual

experience.

InvisiFall 51

Final Prototype

Following Beta Presentation

To enhance the precision of our model, Dr. Argha has recommended key alterations to the

training dataset. The initial modification involves consolidating the 'Walking' and 'Standing'

activities into a single class, as well as combining 'Falling' and 'Laying on the Floor' into another.

This strategy is aimed at minimizing misclassification caused by the resemblance in postures

between these activities.

The second proposed refinement is the removal of extraneous noise within the data. Specifically,

this entails eliminating points that consistently exhibit noise characteristics, identifiable by target

IDs -1, 253, 254, and 255. By purging these noisy data points from each frame, we can significantly

improve the data quality and thereby the model's ability to learn and make accurate predictions.

The provided table serves as an illustrative example of the training data shared by Dr. Argha .

Within this table, the points that are deemed noisy and are marked in red represent the data that

requires removal to refine the training set. Concurrently, the data highlighted in green indicates

the strategy for consolidating the current nine labels into a more streamlined and efficient labeling

system. This consolidation is aimed at reducing the complexity of the model's output by merging

labels with similar characteristics, thereby improving the model's predictive accuracy and

performance.

Table 21: Training data cut, but not denoised yet. Red shows the noise that need to be

filtered and green shows how labels can be grouped

frame_nu

mber

x y z doppler snr targe

t_id

class_ac

tivity

348 -

2.88

6.44 -

1.07

0.26 1.12 2 Stand-

Walking

348 -

2.72

6.44 -

0.91

0.26 1.88 2 Stand-

Walking

348 -

2.75

6.50 -

1.07

0.26 1.36 2 Stand-

Walking

348 -

2.53

6.52 -

0.91

0.26 2.24 2 Stand-

Walking

348 -

2.55

6.58 -

1.07

0.26 1.64 2 Stand-

Walking

348 -

2.33

6.60 -

0.91

0.26 2.52 2 Stand-

Walking

348 -

2.35

6.65 -

1.07

0.26 1.88 2 Stand-

Walking

348 -

2.20

6.64 -

0.91

0.26 2.64 254 Stand-

Walking

InvisiFall 52

348 -

2.22

6.70 -

1.07

0.26 2.00 2 Stand-

Walking

348 -

0.83

2.80 -

0.77

-1.05 5.00 2 Stand-

Walking

348 -

0.71

2.68 -

0.68

-1.05 32.00 2 Stand-

Walking

348 -

0.74

2.77 -

0.64

-1.05 14.64 2 Stand-

Walking

348 -

0.74

2.80 -

0.83

-1.05 5.52 254 Stand-

Walking

348 -

1.51

5.66 -

1.01

0.13 2.52 254 Stand-

Walking

348 -

0.64

2.63 -

0.61

-1.05 33.52 254 Stand-

Walking

New PointNet Model Training Results:

The enhancement in the training data has significantly improved model’s accuracy, achieving a

training accuracy of ~87% and test accuracy of ~94%.

The final training epoch recorded as following:

----6-----

mean loss: 0.341531

accuracy: 0.884233

The final testing file recorded the following:

----1-----

eval mean loss: 0.194829

eval accuracy: 0.939039

eval avg class acc: 0.939334

Table 22: Target Specification vs Obtained Specification

Specification Expected Obtained

Training Accuracy 90% ~87%

Testing Accuracy 85% ~94%

InvisiFall 53

Implementation Accuracy 90% 5%

With the high-accuracy PointNet model, our team moved forward with its real-time

implementation to observe its performance in practical scenarios. The process flow is shown in

the figure below. Initially, when the radar captures a frame of data, the system checks if the total

accumulated frames have surpassed a predefined window size. If this condition is met, the

accumulated frames are sent to the PointNet model for classification. Given that our model isn't

perfect, we established a threshold criterion: if the count of frames identified as a fall exceeds this

threshold, the system interprets this as a fall incident. Consequently, the GUI would turn red. On

the other hand, if the threshold is not met, the system concludes that no fall has occurred, signaling

this with a green GUI.

However, during real-time testing, the model's performance was below expectations, marked by

numerous false alarms and missed fall detections. After a consultative discussion with Dr. Bolic,

our technical advisor, we were advised to shift our approach from a frame-by-frame detection

method to a sequential detection strategy to potentially enhance accuracy and reliability.

Figure 25: Overall Flow of the system with GUI

InvisiFall 54

Final Machine Learning Model: Hybrid Variational RNN AutoEncoder

Following our initial challenges with the PointNet model, where we observed a substantial

discrepancy between training accuracy (95%) and real-world test performance (5%), we realized

that frame-by-frame fall detection might not be feasible with this setup. This realization prompted

us to pivot towards a more robust solution—a Hybrid Variational Recurrent Neural Network

Autoencoder (HVRAE).

Unlike PointNet, which classifies activities for individual frames, HVRAE employs a sequential

detection method. This approach allows the model to analyze a set of frames collectively, thereby

determining the occurrence of a fall through the integration of data over time. Specifically, a fall

is detected when there is a simultaneous spike in the anomaly level and a noticeable drop in the

centroid's height. This dual-indicator method enhances the reliability of fall detection by mitigating

false positives that might occur with simpler, single-frame analysis methods.

This new implemented solution was based on the research presented in the paper by Feng Jin et

al. (2022), titled "mmFall: Fall Detection Using 4-D mmWave Radar and a Hybrid Variational

RNN AutoEncoder".

This paper posits that the point cloud distribution of the human body, given any motion state (such

as walking, running, or crouching), can be modeled by a multivariate Gaussian distribution. This

assumption forms the backbone of their approach, allowing for effective modeling of normal

motion patterns and the identification of anomalies indicative of falls.

For the proposed assumption:

The radar point cloud is denoted as X, and the motion state is denoted by z.

𝑝(𝐗|𝐳) ∝ 𝒩(𝜇, Σ)

This probabilistic approach allows us to define motion in terms of changes in the distribution

parameters across frames according to Feng Jin et al. (2022):

𝑝(𝐳|𝐗) =
𝑝(𝐗|𝐳)𝑝(𝐳)

∫ 𝑝(𝐗|𝐳)𝑝(𝐳)𝑑𝐳
.

Given the complexity of directly calculating 𝑝(𝐳|𝐗) Variational Inference was used as an

approximation method. VI tries to reformulate the problem into an optimization challenge where

it tries to minimise the Kullback-Leibler divergence between the estimation q(z) and the true

posterior 𝑝(𝐳|𝐗) according to Feng Jin et al. (2022):

𝑞∗(𝐳) = arg𝑚𝑖𝑛
𝑞(𝐳)∈𝑄

 KLD{𝑞(𝐳)||𝑝(𝐳|𝐗)}

Note to Reader:

InvisiFall 55

Variational Inference is a technique used in Bayesian statistics to approximate probability

densities. It is useful when exact computation of these densities is hard to achieve due to their

complexity. VI transforms the problem of computing these densities into an optimization problem.

Variational Autoencoder (VAE):

This optimization is implemented through the variational autoencoder architecture, where the

encoder learns to approximate the posterior 𝑝(𝐳|𝐗) and then the decoder reconstructs the input

data X from the representation z, in other words: essential dynamics of the motion states are

captured.

The loss function is as follows according to Feng Jin et al. (2022):

ℒVAE = 𝐾𝐿 𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 − 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝐿𝑜𝑠𝑠

= KLD{𝑞(𝐳)||𝑝(𝐳)} − 𝔼𝑞[log 𝑝(𝐗|𝐳)]

KL Divergence: The KL Divergence in a VAE is used to measure the difference between

the learned latent variable distribution 𝑞(𝒛|𝑿) and a prior distribution 𝑝(𝐳) , which is

typically assumed to be a standard normal distribution 𝒩(0, 𝐼), where 0 is a zero mean

vector and I is the identity matrix as the covariance, indicating that the latent variables are

assumed to be independent and normally distributed with mean zero and variance one. The

equation for the KL Divergence between a factorized Gaussian 𝑞(𝐳), as the approximate

posterior and the prior Gaussian distribution is given by, according to Feng Jin et al.

(2022)::

KLD{𝑞(𝐳)||𝑝(𝐳)} = −
1

2
∑{1 + log 𝝈𝑞[𝑑]2 − 𝝁𝑞[𝑑]2 − 𝝈𝑞[𝑑]2}

𝐷

𝑑=1

With D-dimension is the number of latent variables used to encode the essential

information of the input data A higher D allows the latent space to capture more details

about the data, potentially leading to better reconstruction accuracy but at the risk of

overfitting and increased computational complexity. A lower D simplifies the model and

can help in generalizing better, but it may lose significant information about the data,

leading to poor reconstructions.

Reconstruction Loss: The Reconstruction Loss is used to ensure that the decoder part of

the VAE can accurately reconstruct the original input data X from the latent variables z. It

typically uses the negative log-likelihood of the observed data given the latent variables,

which for Gaussian assumptions of the decoder output, is computed as, according to Feng

Jin et al. (2022):

InvisiFall 56

𝔼𝑞[log 𝑝(𝐗|𝐳)] ≈ −
1

2
∑

𝑁

𝑛=1

∑{
(𝐱𝑛[𝑘] − 𝝁𝑝[𝑘])2

𝝈𝑝[𝑘]2
+ log 𝝈𝑝[𝑘]2}

𝐾

𝑘=1

With:

▪ 𝜇𝑝[𝑘] and 𝜎𝑝[𝑘] are the mean and variance predicted by the decoder for the k-th

dimension of the output data vector. These parameters define the Gaussian distribution

from which the reconstruction of each data point is sampled.

▪ 𝑥𝑛[𝑘] is the actual value of the k-th dimension of the n-th data point in the dataset.

▪ N is the total number of data points in the dataset, and K is the number of dimensions

in each data point.

Integrating a Recurrent Neural Network to the VAE:

The integration of a Recurrent Neural Network (RNN) with a Variational Autoencoder (VAE) to

form a Hybrid Variational RNN Autoencoder (HVRAE) is a sophisticated method that capitalizes

on the strengths of both architectures.

The RNN takes the sequence of latent representations and processes it over time. At each time step

l, the hidden state hl is updated based input from the sequence 𝑥𝑙and the previous hidden state hl−1,

according to Feng Jin et al. (2022):

ℎ𝑙 = tanh (𝑊 ∗ ℎ𝑙−1 + 𝑈 ∗ 𝑥𝑙)∀𝑙 = 1,2, … , 𝐿

according to Feng Jin et al. (2022), W and U represent the sets of trainable parameters,

encompassing both the weights and biases. These parameters are key to the RNN's ability to learn

from data. The variable L denotes the total number of frames in the sequence, which corresponds

to the duration over which the RNN extends its analysis.

Figure 26: The integration of a Recurrent Neural Network (RNN) with a Variational Autoencoder (VAE) into a sequence-

to-sequence modeling framework ➔ Recurrent Autoencoder RAE (Feng Jin et al.,2022, p.6)

InvisiFall 57

The input to the Recurrent Autoencoder (RAE) consists of a time-ordered series of feature vectors,

each with its own spatial (feature) and temporal (time) dimensions. Within the RAE framework,

the EncoderMLP and DecoderMLP are dedicated to the spatial aspect, compressing the high-

dimensional feature data from each individual frame and subsequently reconstructing it. This

process distills the critical information from the input data into a more manageable form.

The RNN Encoder and Decoder handle the temporal aspect by processing the sequence of

compressed features across frames. They work in together to capture the progression of features

over time, effectively modeling the dynamics of the input sequence. By doing so, the RNN Encoder

and Decoder contribute to a significant reduction of temporal redundancy, ensuring that the

temporal patterns are represented efficiently.

Together, the RAE architecture harmonizes the spatial compression with temporal sequence

modeling. This dual approach not only simplifies the complexity of the data but also preserves the

essential characteristics across both dimensions, making it a robust solution for tasks that require

an understanding of how features evolve over time.

Data Processing and data flow:

Adapting the data preprocessing approach from Feng Jin et al. (2022) to our mmWave radar

model 1443, which captures data at a higher frame rate of 20 frames per second, involved several

customized steps to accommodate our unique data structure and analysis needs.

Figure 27: mmWave Radar IWR1443BOOST used for the Final Design

Here is an explanation of how we modified the data processing:

Raw Data Structure: The raw data from the mmWave radar model 1443 are captured and

saved In a CSV file with five columns: Frame Number, x, y, z, and Doppler velocity.

InvisiFall 58

Each row corresponds to a single point's spatial coordinates and its Doppler measurement

at a specific frame.

Data Reshaping: The preprocessing script transforms the CSV data into a 4-dimensional

array with the shape (total number of 10-frame batches,10,64,4)(total number of 10-

frame batches,10,64,4). This structure organizes the data into batches where each batch

consists of 10 consecutive frames, each frame containing up to 64 points, and each point

represented by 4 dimensions (x, y, z, Doppler).

Centroid Calculation: For each of the 10-frame batches, centroids are computed for the

x, y, and z coordinates separately within each frame. This is achieved by averaging the

positions of all points within a frame, yielding centroid_x, centroid_y, and centroid_z for

each of the 10 frames.

Data Resampling: If a frame contains fewer than 64 points, a resampling method

inspired by Feng Jin et al. (2022) is applied. This technique expands the point cloud to

have a consistent number of points across all frames, while preserving the mean and

covariance of the original data points within each frame.

Training and Testing Split: The reshaped data are then divided into training and testing

datasets using an 80/20 split. This common approach allocates 80% of the data for

training the HVRAE model and 20% for testing its performance.

To maintain the sequential integrity of the time series data for training and testing the

HVRAE model, a chronological split was implemented. Specifically, we designated the

first 80% of the data for training and the remaining 20% for testing, as illustrated in the

following code snippet from Appendix D:

 # Split data into training and testing sets

 split_idx = int(total_processed_pattern_np.shape[0] * self.split_ratio)
 train_data = total_processed_pattern_np[:split_idx]
 test_data = total_processed_pattern_np[split_idx:]

Where the total_processed_pattern_np is the total sequential data array collected from

normal activity done by Bhupali Kauchik and Fucheng Wen.

The model is trained on an uninterrupted sequence of data, which is crucial for capturing

the temporal dependencies inherent in time series analysis.

Data Normalization and Augmentation: To further prepare the data for the HVRAE

model, normalization may be applied to the spatial coordinates and Doppler velocities to

scale the data appropriately for neural network processing. Data augmentation techniques

can also be employed to increase the diversity and robustness of the training dataset.

InvisiFall 59

HVRAE Model Input: The preprocessed and split data are now ready to be input into the

HVRAE model. The model will learn from the spatial and temporal features extracted

from the sequences of point cloud data to detect patterns indicative of falls.

Fall Detection: Utilizing the trained HVRAE model, the system can now analyze unseen

data from the testing set to identify potential falls by detecting anomalies in the sequence

of motion as captured by the radar.

Figure 28: HVRAE Architecture (Feng Jin et al. ,2022, p.7)

This schematic illustrates the operation of a Hybrid Variational RNN Autoencoder (HVRAE) for

fall detection, utilizing mmWave radar technology. Initially, the radar sensor captures a point cloud

depicting the spatial dynamics of individuals within its field of view. In the preprocessing phase,

these point clouds are transformed into a standard reference coordinate system, ensuring

uniformity across data frames. Sequential frames are accumulated to construct a comprehensive

motion pattern, with the centroid of each frame calculated to monitor the central point of detected

movements.

Within the HVRAE framework, the VAE Encoder analyzes each frame to estimate the mean and

variance parameters of the latent motion states, employing a reparameterization technique for

sampling. These states are then sequenced and processed through the RNN Seq2Seq Model, which

interprets temporal patterns and updates hidden states to reflect the evolving dynamics of the

observed environment.

The model's efficacy in identifying falls is determined by the HVRAE loss function, which

computes reconstruction accuracy and anomaly levels. If significant centroid height displacement

is detected concurrently with an anomaly spike, the system triggers a fall alert. This intelligent

InvisiFall 60

integration of spatial and temporal data processing allows for real-time, accurate fall detection,

pivotal for ensuring swift response in residential care scenarios.

Fall Detection logic and Results:

A semi supervised learning strategy was employed to train the HVRAE model just as described in

Feng Jin et al. (2022), primarily utilizing normal activities:

The training data for the model was amassed over an 8 hour-long session within Dr. Bolic's

laboratory. Subjects Bhupali Kauchik and Fucheg Wen engaged in a variety of standard activities,

including walking, sitting on a chair and crouching, among others. Figure 29 illustrates the

delimited area within the lab designated for the training activities.

Figure 29: Semi Supervised Model Training Area

During training, the HVRAE is designed to yield a low loss value for these standard movements,

aligning with the goal of recognizing typical human activity patterns.

The output below shows the training result of the HVRAE model on the normal activity data that

was collected by subjects Bhupali Kaushik and Fucheng Wen:

Epoch 1/20

2236/2236 [==============================] - 2s 720us/sample - loss: 4.3397 - val_loss: 290.6379

Epoch 2/20

2236/2236 [==============================] - 2s 683us/sample - loss: 3.2628 - val_loss: 191.5580

Epoch 3/20

2236/2236 [==============================] - 1s 617us/sample - loss: 2.5579 - val_loss: 120.7603

Epoch 4/20

2236/2236 [==============================] - 1s 601us/sample - loss: 1.8641 - val_loss: 88.2036

Epoch 5/20

InvisiFall 61

2236/2236 [==============================] - 1s 588us/sample - loss: 5.6952 - val_loss: 47.1426

Epoch 6/20

2236/2236 [==============================] - 1s 607us/sample - loss: 0.8668 - val_loss: 29.5522

Epoch 7/20

2236/2236 [==============================] - 1s 618us/sample - loss: 0.4868 - val_loss: 44.0542

Epoch 8/20

2236/2236 [==============================] - 1s 620us/sample - loss: 1.3833 - val_loss: 15.9794

Epoch 9/20

2236/2236 [==============================] - 1s 605us/sample - loss: 1.6727 - val_loss: 15.5430

Epoch 10/20

2236/2236 [==============================] - 1s 615us/sample - loss: 0.2352 - val_loss: 10.8625

Epoch 11/20

2236/2236 [==============================] - 1s 629us/sample - loss: 0.1671 - val_loss: 8.7755

Epoch 12/20

2236/2236 [==============================] - 1s 602us/sample - loss: 1.2262 - val_loss: 11.1153

Epoch 13/20

2236/2236 [==============================] - 1s 619us/sample - loss: 0.3032 - val_loss: 5.8586

Epoch 14/20

2236/2236 [==============================] - 1s 605us/sample - loss: 0.6980 - val_loss: 4.8730

Epoch 15/20

2236/2236 [==============================] - 1s 604us/sample - loss: 0.1244 - val_loss: 3.7878

Epoch 16/20

2236/2236 [==============================] - 1s 584us/sample - loss: 0.0519 - val_loss: 2.8241

Epoch 17/20

2236/2236 [==============================] - 1s 603us/sample - loss: 0.0453 - val_loss: 2.6725

Epoch 18/20

2236/2236 [==============================] - 1s 604us/sample - loss: 3.0735 - val_loss: 2.8718

Epoch 19/20

2236/2236 [==============================] - 1s 600us/sample - loss: 0.3139 - val_loss: 1.7264

Epoch 20/20

2236/2236 [==============================] - 1s 610us/sample - loss: 0.0767 - val_loss: 1.5763

INFO: Training is done!

The model's loss, in this context, acts as an indicator of deviation from known activities patterns.

Concurrently, we monitor the vertical displacement of the body's centroid across frames. Should

this displacement exceed a predetermined threshold while the anomaly level is similarly elevated,

the system interprets this as a fall.

According to Feng Jin et al. (2022) this detection method is rooted in the World Health

Organization's definition of a fall, incorporating both the unexpected nature of the movement

(anomaly level) and the resultant change in body position (centroid height drop). The HVRAE's

dual-monitoring mechanism ensures that a fall is recognized not only by the irregularity of motion

but also by the physical fall detected by the radar.

InvisiFall 62

Figure 30: HVRAE Anomalies, and Z centroid shifts change over time for 15 falls recorded seperate from the data used to

train the model. Subject: Ali Zaytoun

Figure 30 showcases the effectiveness of the HVRAE model in fall detection. The model, tested

on 15 instances of falls, exhibits a clear correlation between spikes in the anomaly detection metric

(Interpolated Loss History) and significant shifts in the centroid height, confirming the occurrence

of a fall. The visual data illustrates that all 15 falls were successfully identified, demonstrating the

model’s proficiency in distinguishing between regular activities and fall events. The simultaneous

peaks in the loss history and the centroid's movement provide a compelling visualization of the

HVRAE model’s capability to detect anomalies in real-time accurately. This result validates the

HVRAE’s potential as a reliable tool for fall detection in real-world scenarios.

Please note: The training dataset was composed of point cloud data from subjects of varying body

types, including Bhupali Kaushik (1.68m, 58kg) and Fucheng Wen (1.80m, 90kg). This diversity

in data ensures the model's adaptability to different human body shapes.

The model, initially trained on standard activity data, was evaluated using anomalous data, which

included 15 instances of falls by the subject, Ali Zaytoun (1.85m, 85kg). The outcomes of this

assessment are illustrated in Figure 30.

Subsequent testing was conducted on subject, Saad Rhanmouni (1.85m, 75kg), to validate the

model's generalization capabilities across unseen body dimensions and movements.

Enhancements to our fall detection system have culminated in a series of tests, including a critical

scenario involving 30 simulated falls. The system successfully identified 29 of these incidents.

However, it failed to detect one scenario and erroneously triggered two false alerts. This resulted

in an accuracy rate exceeding 90% for this particular test series.

InvisiFall 63

To maintain transparency and foster collaborative development, a video capturing these test

scenarios was shared with our academic class, project mentor, and client, providing a

comprehensive view of the system's performance and reliability in real-time fall detection.

The figure 31 shows the obtained results:

Figure 31: Demo - 30 Falls, real time testing of the trained and tested model. Subject Saad Rhanmouni

➔The HVRAE model has been incorporated into our real-time data acquisition system.

Utilizing a 10-second observational window, our Python script processes the amassed 200

frames, equivalent to the data collected over this period. Upon detection of a fall, as

identified through the HVRAE's analysis, an alert is promptly communicated to users via

the graphical user interface detailed below. This approach ensures continuous monitoring

and immediate notification, reinforcing the responsiveness and reliability of the fall

detection mechanism within the care environment.

Updated GUI for Fall Detection

In addition to transitioning from the PointNet model to the HVRAE model, updates have been

implemented to the graphical user interface (GUI) that displays the point cloud and alerts users to

fall incidents. The redesigned interface, as depicted in the accompanying illustration, now requires

user initiation to begin data collection; the "Start Detecting" button must be engaged for the radar

to activate and update the point cloud display. Conversely, selecting "Stop Detecting" halts the

radar's data collection.

The notification system within the GUI maintains its user-friendly color cues: a green display

signifies the absence of a detected fall, while a red display indicates a fall has been recognized.

InvisiFall 64

The dimensions of the notification box have been refined to enhance visual appeal and interface

aesthetics.

Moreover, the GUI's visualization elements have seen significant improvements for clarity and

usability. The extraneous diagonal lines that were once present along the side walls have been

excised to create a cleaner, more streamlined user experience. A new grid floor feature has been

introduced, providing users with clearer orientation and a more intuitive grasp of the spatial

relationships depicted in the point cloud visualization. These enhancements serve to make the

system more accessible and easier to interpret for users monitoring the radar's detections.

Figure 32: Updated GUI Interface

Notification system, and Mini-computer:

For the final design of our fall detection system, we have retained the relay-based notification

approach, previously demonstrated in our second prototype, for its reliability and efficiency.

Figure 33: USB Relay and 5V Alarm Prototype

InvisiFall 65

The system architecture has been optimized by transitioning to a compact, minicomputer setup,

running a Linux environment which enhances computation efficiency.

Figure 34: Interl NUC - NUC5i3RYH MiniComputer

During testing, we observed that the Intel NUC minicomputer encountered difficulties with

simultaneous live detection and processing using the trained HVRAE model. To address this

limitation and prevent potential data buffer saturation, we recommend upgrading to a more

powerful system, such as the Nvidia Jetson Nano. This device offers faster rendering capabilities

and is better equipped to handle the demands of reliable, real-time fall detection, ensuring that

the system operates seamlessly without any lag or risk of overloading.

Discussion:

The final prototype presents a sophisticated solution to the initial problem of detecting falls in

elderly care residences with a high degree of accuracy and minimal false positives. By

leveraging HVRAE, the prototype addresses the limitations of the earlier PointNet model, which

was unable to effectively discern falls from other activities in real-world scenarios. The

sequential detection method and dual-indicator system—spikes in anomaly levels coupled with

centroid height reductions—significantly enhance the reliability of the detection mechanism, as

demonstrated in rigorous testing with a 90% accuracy rate. Furthermore, the prototype integrates

seamlessly with the real-time data acquisition system, operating within a 10-second window to

process and notify users of falls, thus fulfilling the requirements for an efficient, contactless, and

privacy-respecting monitoring solution. This innovative approach successfully meets the

project's objectives, providing a robust and user-friendly fall detection system.

InvisiFall 66

Ethical and Diversity Considerations

When considering the ethical implications of our actions, particularly the utilization of

opensource code for PointNet, HVARE and the associated training dataset, we recognize a

significant benefit from a utilitarian perspective. This approach enables us to complete our project

within a constrained timeframe, which is advantageous for us. However, from the perspectives of

rights and equity, the reliance on open-source code and datasets poses ethical challenges. These

resources were developed through the diligent efforts of researchers, and utilizing them as if they

were our own creations raises concerns about fairness and respect for the original authors. To

address these ethical concerns, we decided to continue utilizing open-source resources as they are

essential for completing our project on time. However, we ensured that the creators of these

resources receive proper acknowledgment. We credit the providers during our final presentation

and in our report. Furthermore, we've discussed the future of this project with our technical adviser,

who is interested in pursuing it as a research topic. We will ensure to cite the providers

appropriately in any subsequent academic paper.

In our design and development process, we ensured that all team members felt valued and

respected. One aspect of our diverse team is the representation of people from various countries,

each bringing unique perspectives and experiences to the table. This diversity enriches our

discussions and leads to more comprehensive problem-solving approaches. Additionally, we

recognized and accommodated religious practices such as Ramadan, where some teammates

observed fasting. To ensure inclusivity, we adjusted our schedules to allow for dinner breaks at

the same time, demonstrating our respect for their religious commitments. Furthermore, we

embraced the opportunity to celebrate cultural festivities together even though not all members

follows Ramadan. By embracing diversity and accommodating individual needs, we not only

promote a more inclusive work environment but also harness the collective strength of our team

to drive innovation and success.

InvisiFall 67

Reflection and Lessons Learned

Our journey from the initial concept to the development of a functional prototype of the fall

detection system has been marked by numerous challenges and valuable insights. Through each

phase of the project, we encountered obstacles that prompted us to adapt our approach, refine our

methods, and collaborate closely with our client to ensure alignment with their needs and

expectations.

One of the key takeaways from this project is the importance of client feedback and iterative

development. Our initial MVP presentation provided us with a valuable opportunity to showcase

our progress and receive input from our client, Mr. Hesam. For instance, his request for the fall

detection system to integrate with their existing communication system prompted us to explore

alternative notification methods, ultimately leading to the adoption of a USB-controlled relay for

enhanced reliability. Additionally, our experience with hardware integration underscored the

importance of selecting components that not only meet functional requirements but also align with

client preferences for size and ease of use.

We faced challenges right from the sensing part where the detected object points given by the radar

were not enough and did not capture the actual scenario fully. To tackle this, we experimented

with different variants of radar and their optimum hardware configuration for our application,

finalizing the model in the end.

Another critical lesson learned pertains to the significance of data quality and preprocessing in

machine learning applications. Our early attempts at fall detection using the least mean square

method highlighted the challenges posed by noisy data and the limitations of traditional signal

processing techniques. This realization prompted us to explore more sophisticated machine

learning algorithms, such as PointNet, and invest in robust data preprocessing techniques,

including down sampling and over sampling, to ensure consistency and accuracy in our model

training.

Throughout this project, we also gained valuable insights into the complexities of interdisciplinary

collaboration and project management. Effective communication, task delegation, and regular

progress updates with the help of Jira platform, were essential for keeping our team aligned and

focused on our shared goals. Moreover, our engagement with external stakeholders, such as

Professor Argha, provided us with invaluable expertise and resources to overcome technical

challenges and enrich our solution.

In conclusion, our journey to develop a fall detection system has been a valuable learning

experience that has reinforced the importance of client-centric design, iterative development, and

interdisciplinary collaboration. By embracing feedback, leveraging advanced technologies, and

prioritizing user experience, we have laid the foundation for a robust and reliable solution that

addresses the unique needs of our client and contributes to the advancement of healthcare

technology.

InvisiFall 68

Conclusion

The development of a fall detection system for retirement homes has been a dynamic journey

marked by continuous iteration, refinement, and adaptation to meet evolving client needs and

technological challenges. Through an iterative process of prototyping, testing, and feedback

incorporation, our team has navigated the complexities inherent in designing a reliable and

effective solution for elderly care. Client feedback and the professor’s guidance served as a

compass leading our development trajectory, prompting crucial refinements and enhancements.

The Minimum Viable Product (MVP) demonstration provided a foundational glimpse into the

operational concept of the fall detection system. Despite its limitations, such as the radar's inability

to process rapid influxes of data during falls, this initial iteration served as a springboard for further

enhancements.

The transition to the Beta Release introduced pivotal changes, including the adoption of a new,

more powerful IWR6843ISK radar and a direct USB-controlled relay for driving the buzzer load

and the integration of existing communication systems for notifications. The radar sends detected

object points to the PointNet ML model on the minicomputer via UART. Upon fall detection, a

PowerShell command triggers the USB relay. This iteration marked a significant step forward in

system functionality and reliability, aligning more closely with client expectations and

requirements. The integration of PointNet Neural Networks for fall detection introduced new

challenges and opportunities. Data preprocessing methods, such as down sampling and

oversampling, were employed to ensure consistency in input data, enhancing the model's

performance and accuracy. Despite initial setbacks in model training accuracy, iterative

improvements led to notable enhancements, demonstrating the efficacy of our approach.

The incorporation of a graphical user interface (GUI) and notification system updates further

enriched the user experience and functionality of the system. Real-time visualization of fall events

through the GUI and seamless integration with existing communication systems portrayed our

commitment to user-centric design and practical utility.

In conclusion, the development journey of the fall detection system exemplifies the iterative and

collaborative nature of product development. Through close collaboration with stakeholders,

continual refinement of design and functionality, and a commitment to user needs, our team has

crafted a solution poised to make a meaningful impact in the realm of elderly care. As we embark

on future iterations and enhancements, we remain dedicated to delivering a solution that prioritizes

safety, reliability, and user experience for the benefit of our clients and their residents.

InvisiFall 69

Future Work

Our initial endeavors in fall detection relied on a frame-by-frame anomaly detection method,

which demonstrated limitations in accurately discerning the subtleties of rapid subject movements.

Acknowledging this constraint, our future work will be focusing on adopting a more advanced

system that will prevents falls by proactively identifying possible dangers.

The proposed enhancement involves the implementation of an advanced system capable of

actively identifying any new objects that emerge on the ground, thereby pre-emptively alerting

individuals to potential fall risks, particularly relevant in environments frequented by elderly

individuals. By proactively detecting and flagging potential hazards in real-time, our system aims

to mitigate the risk of accidents and enhance overall safety. PointNet is a powerful neural network

architecture renowned for its ability to classify data on a frame-by-frame basis while also

possessing the remarkable capability to recognize frames even when they are subjected to rotation

or jitter. Leveraging these distinctive features, we intend to deploy PointNet as our primary model

for object identification within indoor environments. By harnessing its robust classification

capabilities and inherent resilience to rotational variations and minor disturbances, we anticipate

achieving accurate and reliable object recognition performance, even in complex real-world

scenarios.

The mini-computer currently employed in the fall-detection system lacks a GPU, leading to

suboptimal performance and noticeable delays in responsiveness. Consequently, upgrading to a

more powerful mini-computer has become a priority item on our agenda to propel this project into

its next phase. By securing a mini-computer with enhanced processing capabilities, including a

dedicated GPU, we anticipate significant improvements in system performance, thereby enabling

smoother and more efficient operation. This upgrade will facilitate the seamless execution of

resource-intensive tasks, contributing to the overall advancement and efficacy of the project.

Moreover, continuous collaboration with stakeholders, including end-users and healthcare

professionals, will be integral to the iterative refinement and validation of our system. Feedback

from these stakeholders will inform ongoing improvements and enhancements, ensuring that our

solution remains responsive to evolving needs and challenges in fall prevention and healthcare

management.

Furthermore, the same mmWave radar technology can be used to extend support for human vital

monitoring like heart rate, breathing rate and patterns. This is possible due to the sub-millimeter

accuracy of the radar capable of capturing the minute displacements of heart and lungs. These

vitals are crucial indicators of health status and can help to identify underlying conditions such as

sleep apnea earlier when changes are observed over time.

In summary, our future work will center on the development and deployment of an advanced fall

prevention system that leverages state-of-the-art technologies and proactive detection mechanisms

to enhance safety and well-being in diverse healthcare settings. Through ongoing collaboration

InvisiFall 70

and innovation, we aim to deliver a robust and effective solution that addresses the complex

challenges associated with fall prevention and promotes optimal outcomes for individuals at risk

of falls.

InvisiFall 71

Appendix

Appendix A

import serial

import time

import numpy as np

import pyqtgraph as pg

from pyqtgraph.Qt import QtGui

import sys

from PyQt5 import QtGui, QtWidgets, QtCore

from pyqtgraph.opengl import GLViewWidget, GLScatterPlotItem

import csv

import pandas as pd

csv_file_path = 'radar_data.csv'

Change the configuration file name

configFileName = '1443config.cfg'

CLIport = {}

Dataport = {}

byteBuffer = np.zeros(2**15,dtype = 'uint8')

byteBufferLength = 0;

--

Function to configure the serial ports and send the data from

the configuration file to the radar

def serialConfig(configFileName):

 global CLIport

 global Dataport

 # Open the serial ports for the configuration and the data ports

 # Raspberry pi

 #CLIport = serial.Serial('/dev/ttyACM0', 115200)

 #Dataport = serial.Serial('/dev/ttyACM1', 921600)

 # Windows

 CLIport = serial.Serial('COM3', 115200)

 Dataport = serial.Serial('COM4', 921600)

 # Read the configuration file and send it to the board

InvisiFall 72

 config = [line.rstrip('\r\n') for line in open(configFileName)]

 for i in config:

 CLIport.write((i+'\n').encode())

 print(i)

 time.sleep(0.01)

 return CLIport, Dataport

--

Function to parse the data inside the configuration file

def parseConfigFile(configFileName):

 configParameters = {} # Initialize an empty dictionary to store the

configuration parameters

 # Read the configuration file and send it to the board

 config = [line.rstrip('\r\n') for line in open(configFileName)]

 for i in config:

 # Split the line

 splitWords = i.split(" ")

 # Hard code the number of antennas, change if other configuration is used

 numRxAnt = 4

 numTxAnt = 3

 # Get the information about the profile configuration

 if "profileCfg" in splitWords[0]:

 startFreq = int(float(splitWords[2]))

 idleTime = int(splitWords[3])

 rampEndTime = float(splitWords[5])

 freqSlopeConst = float(splitWords[8])

 numAdcSamples = int(splitWords[10])

 numAdcSamplesRoundTo2 = 1;

 while numAdcSamples > numAdcSamplesRoundTo2:

 numAdcSamplesRoundTo2 = numAdcSamplesRoundTo2 * 2;

 digOutSampleRate = int(splitWords[11]);

 # Get the information about the frame configuration

 elif "frameCfg" in splitWords[0]:

 chirpStartIdx = int(splitWords[1]);

 chirpEndIdx = int(splitWords[2]);

InvisiFall 73

 numLoops = int(splitWords[3]);

 numFrames = int(splitWords[4]);

 framePeriodicity = int(splitWords[5]);

 # Combine the read data to obtain the configuration parameters

 numChirpsPerFrame = (chirpEndIdx - chirpStartIdx + 1) * numLoops

 configParameters["numDopplerBins"] = numChirpsPerFrame / numTxAnt

 configParameters["numRangeBins"] = numAdcSamplesRoundTo2

 configParameters["rangeResolutionMeters"] = (3e8 * digOutSampleRate * 1e3) /

(2 * freqSlopeConst * 1e12 * numAdcSamples)

 configParameters["rangeIdxToMeters"] = (3e8 * digOutSampleRate * 1e3) / (2 *

freqSlopeConst * 1e12 * configParameters["numRangeBins"])

 configParameters["dopplerResolutionMps"] = 3e8 / (2 * startFreq * 1e9 *

(idleTime + rampEndTime) * 1e-6 * configParameters["numDopplerBins"] * numTxAnt)

 configParameters["maxRange"] = (300 * 0.9 * digOutSampleRate)/(2 *

freqSlopeConst * 1e3)

 configParameters["maxVelocity"] = 3e8 / (4 * startFreq * 1e9 * (idleTime +

rampEndTime) * 1e-6 * numTxAnt)

 return configParameters

--

Funtion to read and parse the incoming data

def readAndParseData14xx(Dataport, configParameters):

 global byteBuffer, byteBufferLength

 # Constants

 OBJ_STRUCT_SIZE_BYTES = 12;

 BYTE_VEC_ACC_MAX_SIZE = 2**15;

 MMWDEMO_UART_MSG_DETECTED_POINTS = 1;

 MMWDEMO_UART_MSG_RANGE_PROFILE = 2;

 maxBufferSize = 2**15;

 magicWord = [2, 1, 4, 3, 6, 5, 8, 7]

 # Initialize variables

 magicOK = 0 # Checks if magic number has been read

 dataOK = 0 # Checks if the data has been read correctly

 frameNumber = 0

 detObj = {}

 readBuffer = Dataport.read(Dataport.in_waiting)

 byteVec = np.frombuffer(readBuffer, dtype = 'uint8')

 byteCount = len(byteVec)

InvisiFall 74

 # Check that the buffer is not full, and then add the data to the buffer

 if (byteBufferLength + byteCount) < maxBufferSize:

 byteBuffer[byteBufferLength:byteBufferLength + byteCount] =

byteVec[:byteCount]

 byteBufferLength = byteBufferLength + byteCount

 # Check that the buffer has some data

 if byteBufferLength > 16:

 # Check for all possible locations of the magic word

 possibleLocs = np.where(byteBuffer == magicWord[0])[0]

 # Confirm that is the beginning of the magic word and store the index in

startIdx

 startIdx = []

 for loc in possibleLocs:

 check = byteBuffer[loc:loc+8]

 if np.all(check == magicWord):

 startIdx.append(loc)

 # Check that startIdx is not empty

 if startIdx:

 # Remove the data before the first start index

 if startIdx[0] > 0 and startIdx[0] < byteBufferLength:

 byteBuffer[:byteBufferLength-startIdx[0]] =

byteBuffer[startIdx[0]:byteBufferLength]

 byteBuffer[byteBufferLength-startIdx[0]:] =

np.zeros(len(byteBuffer[byteBufferLength-startIdx[0]:]),dtype = 'uint8')

 byteBufferLength = byteBufferLength - startIdx[0]

 # Check that there have no errors with the byte buffer length

 if byteBufferLength < 0:

 byteBufferLength = 0

 # word array to convert 4 bytes to a 32 bit number

 word = [1, 2**8, 2**16, 2**24]

 # Read the total packet length

 totalPacketLen = np.matmul(byteBuffer[12:12+4],word)

 # Check that all the packet has been read

 if (byteBufferLength >= totalPacketLen) and (byteBufferLength != 0):

 magicOK = 1

InvisiFall 75

 # If magicOK is equal to 1 then process the message

 if magicOK:

 # word array to convert 4 bytes to a 32 bit number

 word = [1, 2**8, 2**16, 2**24]

 # Initialize the pointer index

 idX = 0

 # Read the header

 magicNumber = byteBuffer[idX:idX+8]

 idX += 8

 version = format(np.matmul(byteBuffer[idX:idX+4],word),'x')

 idX += 4

 totalPacketLen = np.matmul(byteBuffer[idX:idX+4],word)

 idX += 4

 platform = format(np.matmul(byteBuffer[idX:idX+4],word),'x')

 idX += 4

 frameNumber = np.matmul(byteBuffer[idX:idX+4],word)

 idX += 4

 timeCpuCycles = np.matmul(byteBuffer[idX:idX+4],word)

 idX += 4

 numDetectedObj = np.matmul(byteBuffer[idX:idX+4],word)

 idX += 4

 numTLVs = np.matmul(byteBuffer[idX:idX+4],word)

 idX += 4

 # UNCOMMENT IN CASE OF SDK 2

 #subFrameNumber = np.matmul(byteBuffer[idX:idX+4],word)

 #idX += 4

 # Read the TLV messages

 for tlvIdx in range(numTLVs):

 # word array to convert 4 bytes to a 32 bit number

 word = [1, 2**8, 2**16, 2**24]

 # Check the header of the TLV message

 tlv_type = np.matmul(byteBuffer[idX:idX+4],word)

 idX += 4

 tlv_length = np.matmul(byteBuffer[idX:idX+4],word)

 idX += 4

 # Read the data depending on the TLV message

 if tlv_type == MMWDEMO_UART_MSG_DETECTED_POINTS:

InvisiFall 76

 # word array to convert 4 bytes to a 16 bit number

 word = [1, 2**8]

 tlv_numObj = np.matmul(byteBuffer[idX:idX+2],word)

 idX += 2

 tlv_xyzQFormat = 2**np.matmul(byteBuffer[idX:idX+2],word)

 idX += 2

 # Initialize the arrays

 rangeIdx = np.zeros(tlv_numObj,dtype = 'int16')

 dopplerIdx = np.zeros(tlv_numObj,dtype = 'int16')

 peakVal = np.zeros(tlv_numObj,dtype = 'int16')

 x = np.zeros(tlv_numObj,dtype = 'int16')

 y = np.zeros(tlv_numObj,dtype = 'int16')

 z = np.zeros(tlv_numObj,dtype = 'int16')

 for objectNum in range(tlv_numObj):

 # Read the data for each object

 rangeIdx[objectNum] = np.matmul(byteBuffer[idX:idX+2],word)

 idX += 2

 dopplerIdx[objectNum] = np.matmul(byteBuffer[idX:idX+2],word)

 idX += 2

 peakVal[objectNum] = np.matmul(byteBuffer[idX:idX+2],word)

 idX += 2

 x[objectNum] = np.matmul(byteBuffer[idX:idX+2],word)

 idX += 2

 y[objectNum] = np.matmul(byteBuffer[idX:idX+2],word)

 idX += 2

 z[objectNum] = np.matmul(byteBuffer[idX:idX+2],word)

 idX += 2

 # Make the necessary corrections and calculate the rest of the

data

 rangeVal = rangeIdx * configParameters["rangeIdxToMeters"]

 dopplerIdx[dopplerIdx > (configParameters["numDopplerBins"]/2 -

1)] = dopplerIdx[dopplerIdx > (configParameters["numDopplerBins"]/2 - 1)] - 65535

 dopplerVal = dopplerIdx *

configParameters["dopplerResolutionMps"]

 #x[x > 32767] = x[x > 32767] - 65536

 #y[y > 32767] = y[y > 32767] - 65536

 #z[z > 32767] = z[z > 32767] - 65536

 x = x / tlv_xyzQFormat

 y = y / tlv_xyzQFormat

 z = z / tlv_xyzQFormat

InvisiFall 77

 # Store the data in the detObj dictionary

 detObj = {"numObj": tlv_numObj, "rangeIdx": rangeIdx, "range":

rangeVal, "dopplerIdx": dopplerIdx, \

 "doppler": dopplerVal, "peakVal": peakVal, "x": x, "y":

y, "z": z}

 dataOK = 1

 # Remove already processed data

 if idX > 0 and byteBufferLength > idX:

 shiftSize = totalPacketLen

 byteBuffer[:byteBufferLength - shiftSize] =

byteBuffer[shiftSize:byteBufferLength]

 byteBuffer[byteBufferLength - shiftSize:] =

np.zeros(len(byteBuffer[byteBufferLength - shiftSize:]),dtype = 'uint8')

 byteBufferLength = byteBufferLength - shiftSize

 # Check that there are no errors with the buffer length

 if byteBufferLength < 0:

 byteBufferLength = 0

 return dataOK, frameNumber, detObj

--

Funtion to update the data and display in the plot

def update():

 dataOk = 0

 global detObj

 x = []

 y = []

 # Read and parse the received data

 dataOk, frameNumber, detObj = readAndParseData14xx(Dataport,

configParameters)

 if dataOk and len(detObj["x"]) > 0:

 #print(detObj)

 x = -detObj["x"]

 y = detObj["y"]

InvisiFall 78

 s.setData(x,y)

 QtGui.QGuiApplication.processEvents()

 return dataOk

------------------------- MAIN ---

if __name__ == '__main__':

 # Configurate the serial port

 CLIport, Dataport = serialConfig(configFileName)

 # Get the configuration parameters from the configuration file

 configParameters = parseConfigFile(configFileName)

 # Initialize the Qt App and PlotWidget

 app = QtWidgets.QApplication(sys.argv)

 mainWin = QtWidgets.QMainWindow()

 mainWin.setWindowTitle('2D scatter plot')

 # Create a pyqtgraph Plot Widget and set it as the central widget of the

MainWindow

 plotWidget = pg.PlotWidget()

 mainWin.setCentralWidget(plotWidget)

 # Configure the plot

 plotWidget.setBackground('w')

 plotWidget.setXRange(-1.5, 1.5)

 plotWidget.setYRange(0, 3)

 plotWidget.setLabel('left', 'Y position (m)')

 plotWidget.setLabel('bottom', 'X position (m)')

 s = plotWidget.plot([], [], pen=None, symbol='o')

 # Show the MainWindow

 mainWin.show()

 # Define the update function within the main block to access the plotWidget

 def update():

 dataOk = 0

 global detObj

 x = []

 y = []

 # Read and parse the received data

 dataOk, frameNumber, detObj = readAndParseData14xx(Dataport,

configParameters)

InvisiFall 79

 if dataOk and len(detObj["x"]) > 0:

 x = -detObj["x"]

 y = detObj["y"]

 z = detObj["z"]

 rangeIdx = detObj["rangeIdx"]

 dopplerIdx = detObj["dopplerIdx"]

 peakVal = detObj["peakVal"]

 df = pd.DataFrame({

 'Frame Number': [frameNumber] * len(x),

 'X': x,

 'Y': y,

 'Z': z,

 'RangeIdx': rangeIdx,

 'DopplerIdx': dopplerIdx,

 'PeakVal': peakVal

 })

 # Append the DataFrame to the CSV file

 df.to_csv(csv_file_path, mode='a', index=False, header=not

pd.io.common.file_exists(csv_file_path))

 s.setData(x, y)

 QtGui.QGuiApplication.processEvents()

 return dataOk

 # Main loop adaptation for PyQt (using a timer)

 timer = QtCore.QTimer()

 timer.timeout.connect(update)

 timer.start(33) # Update period in milliseconds to achieve ~30 Hz update rate

 # Start the Qt event loop

 sys.exit(app.exec_())

InvisiFall 80

Appendix B:

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

import pandas as pd

from matplotlib.animation import FuncAnimation, FFMpegWriter

Set the path to the ffmpeg executable

plt.rcParams['animation.ffmpeg_path'] = 'C:/ffmpeg/bin/ffmpeg.exe'

Read the CSV file

file = pd.read_csv('saad Fall processed time.csv')

Drop the unnecessary columns

file = file.drop(["RangeIdx", "DopplerIdx", "PeakVal", "Frame Number", "Time

[ms]"], axis='columns')

Group by 'Time[s]'

grouped = file.groupby('Time[s]')

Define the radar position

radar_position = (0, 0, 0)

Prepare the figure and 3D axis

fig = plt.figure()

ax = fig.add_subplot(111, projection='3d')

ax.set_xlabel('X Label')

ax.set_ylabel('Y Label')

ax.set_zlabel('Z Label')

def update(frame_number):

 ax.clear() # Clear previous frame

 frame_data = grouped.get_group(frame_number)

 # Extract X, Y, Z values

 X = frame_data["X"]

 Y = frame_data["Y"]

 Z = frame_data["Z"]

 # Create a scatter plot for the data points

 ax.scatter(X, Y, Z, marker='o')

 # Plot the radar position

 ax.scatter(*radar_position, color='red', marker='^', label='Radar Position')

InvisiFall 81

 # Set title

 ax.set_title(f'3D plot of XYZ changes for Time[s] {frame_number}')

 ax.set_xlabel('X Label')

 ax.set_ylabel('Y Label')

 ax.set_zlabel('Z Label')

 # Adjust the axes limits

 ax.set_xlim([-1.5, 1.5])

 ax.set_ylim([-0, 2])

 ax.set_zlim([-2, 2])

 elevation_angle = 20 # change this value for elevation

 azimuth_angle = 300# change this value for azimuth

 ax.view_init(elev=elevation_angle, azim=azimuth_angle)

 # Show radar position in the legend

 ax.legend()

Creating animation

ani = FuncAnimation(fig, update, frames=grouped.groups.keys(), interval=50,

repeat=False)

Set up the writer

writer = FFMpegWriter(fps=20, metadata=dict(artist='Me'), bitrate=1800)

Save the animation

ani.save('radar_data_animation.mp4', writer=writer)

Show plot

plt.show()

InvisiFall 82

Appendix C:

import argparse

import subprocess

import tensorflow as tf

import numpy as np

from datetime import datetime

import json

import os

import sys

BASE_DIR = os.path.dirname(os.path.abspath(__file__))

sys.path.append(BASE_DIR)

sys.path.append(os.path.dirname(BASE_DIR))

import provider

import pointnet_part_seg as model

enabling Tensorflow1

tf.compat.v1.disable_eager_execution()

DEFAULT SETTINGS

parser = argparse.ArgumentParser()

parser.add_argument('--gpu', type=int, default=1, help='GPU to use [default: GPU

0]')

parser.add_argument('--batch', type=int, default=32, help='Batch Size during

training [default: 32]')

parser.add_argument('--epoch', type=int, default=200, help='Epoch to run

[default: 50]')

parser.add_argument('--point_num', type=int, default=2048, help='Point Number

[256/512/1024/2048]')

parser.add_argument('--output_dir', type=str, default='train_results',

help='Directory that stores all training logs and trained models')

parser.add_argument('--wd', type=float, default=0, help='Weight Decay [Default:

0.0]')

FLAGS = parser.parse_args()

hdf5_data_dir = os.path.join(BASE_DIR, './hdf5_data')

MAIN SCRIPT

point_num = FLAGS.point_num

batch_size = FLAGS.batch

output_dir = FLAGS.output_dir

if not os.path.exists(output_dir):

 os.mkdir(output_dir)

color_map_file = os.path.join(hdf5_data_dir, 'part_color_mapping.json')

InvisiFall 83

color_map = json.load(open(color_map_file, 'r'))

all_obj_cats_file = os.path.join(hdf5_data_dir, 'all_object_categories.txt')

fin = open(all_obj_cats_file, 'r')

lines = [line.rstrip() for line in fin.readlines()]

all_obj_cats = [(line.split()[0], line.split()[1]) for line in lines]

fin.close()

all_cats = json.load(open(os.path.join(hdf5_data_dir,

'overallid_to_catid_partid.json'), 'r'))

NUM_CATEGORIES = 16

NUM_PART_CATS = len(all_cats)

print('#### Batch Size: {0}'.format(batch_size))

print('#### Point Number: {0}'.format(point_num))

print('#### Training using GPU: {0}'.format(FLAGS.gpu))

DECAY_STEP = 16881 * 20

DECAY_RATE = 0.5

LEARNING_RATE_CLIP = 1e-5

BN_INIT_DECAY = 0.5

BN_DECAY_DECAY_RATE = 0.5

BN_DECAY_DECAY_STEP = float(DECAY_STEP * 2)

BN_DECAY_CLIP = 0.99

BASE_LEARNING_RATE = 0.001

MOMENTUM = 0.9

TRAINING_EPOCHES = FLAGS.epoch

print('### Training epoch: {0}'.format(TRAINING_EPOCHES))

TRAINING_FILE_LIST = os.path.join(hdf5_data_dir, 'train_hdf5_file_list.txt')

TESTING_FILE_LIST = os.path.join(hdf5_data_dir, 'val_hdf5_file_list.txt')

MODEL_STORAGE_PATH = os.path.join(output_dir, 'trained_models')

if not os.path.exists(MODEL_STORAGE_PATH):

 os.mkdir(MODEL_STORAGE_PATH)

LOG_STORAGE_PATH = os.path.join(output_dir, 'logs')

if not os.path.exists(LOG_STORAGE_PATH):

 os.mkdir(LOG_STORAGE_PATH)

SUMMARIES_FOLDER = os.path.join(output_dir, 'summaries')

if not os.path.exists(SUMMARIES_FOLDER):

InvisiFall 84

 os.mkdir(SUMMARIES_FOLDER)

def printout(flog, data):

 print(data)

 flog.write(data + '\n')

def placeholder_inputs():

 pointclouds_ph = tf.compat.v1.placeholder(tf.float32, shape=(batch_size,

point_num, 3))

 input_label_ph = tf.compat.v1.placeholder(tf.float32, shape=(batch_size,

NUM_CATEGORIES))

 labels_ph = tf.compat.v1.placeholder(tf.int32, shape=(batch_size))

 seg_ph = tf.compat.v1.placeholder(tf.int32, shape=(batch_size, point_num))

 return pointclouds_ph, input_label_ph, labels_ph, seg_ph

def convert_label_to_one_hot(labels):

 label_one_hot = np.zeros((labels.shape[0], NUM_CATEGORIES))

 for idx in range(labels.shape[0]):

 label_one_hot[idx, labels[idx]] = 1

 return label_one_hot

def train():

 with tf.Graph().as_default():

 with tf.device('/gpu:'+str(FLAGS.gpu)):

 pointclouds_ph, input_label_ph, labels_ph, seg_ph =

placeholder_inputs()

 is_training_ph = tf.compat.v1.placeholder(tf.bool, shape=())

 batch = tf.Variable(0, trainable=False)

 learning_rate = tf.compat.v1.train.exponential_decay(

 BASE_LEARNING_RATE, # base learning rate

 batch * batch_size, # global_var indicating the

number of steps

 DECAY_STEP, # step size

 DECAY_RATE, # decay rate

 staircase=True # Stair-case or continuous

decreasing

)

 learning_rate = tf.maximum(learning_rate, LEARNING_RATE_CLIP)

 bn_momentum = tf.compat.v1.train.exponential_decay(

 BN_INIT_DECAY,

 batch*batch_size,

 BN_DECAY_DECAY_STEP,

 BN_DECAY_DECAY_RATE,

InvisiFall 85

 staircase=True)

 bn_decay = tf.minimum(BN_DECAY_CLIP, 1 - bn_momentum)

 lr_op = tf.compat.v1.summary.scalar('learning_rate', learning_rate)

 batch_op = tf.compat.v1.summary.scalar('batch_number', batch)

 bn_decay_op = tf.compat.v1.summary.scalar('bn_decay', bn_decay)

 labels_pred, seg_pred, end_points = model.get_model(pointclouds_ph,

input_label_ph, \

 is_training=is_training_ph, bn_decay=bn_decay,

cat_num=NUM_CATEGORIES, \

 part_num=NUM_PART_CATS, batch_size=batch_size,

num_point=point_num, weight_decay=FLAGS.wd)

 # model.py defines both classification net and segmentation net,

which share the common global feature extractor network.

 # In model.get_loss, we define the total loss to be weighted sum of

the classification and segmentation losses.

 # Here, we only train for segmentation network. Thus, we set weight

to be 1.0.

 loss, label_loss, per_instance_label_loss, seg_loss,

per_instance_seg_loss, per_instance_seg_pred_res \

 = model.get_loss(labels_pred, seg_pred, labels_ph, seg_ph, 1.0,

end_points)

 total_training_loss_ph = tf.compat.v1.placeholder(tf.float32,

shape=())

 total_testing_loss_ph = tf.compat.v1.placeholder(tf.float32,

shape=())

 label_training_loss_ph = tf.compat.v1.placeholder(tf.float32,

shape=())

 label_testing_loss_ph = tf.compat.v1.placeholder(tf.float32,

shape=())

 seg_training_loss_ph = tf.compat.v1.placeholder(tf.float32, shape=())

 seg_testing_loss_ph = tf.compat.v1.placeholder(tf.float32, shape=())

 label_training_acc_ph = tf.compat.v1.placeholder(tf.float32,

shape=())

 label_testing_acc_ph = tf.compat.v1.placeholder(tf.float32, shape=())

 label_testing_acc_avg_cat_ph = tf.compat.v1.placeholder(tf.float32,

shape=())

 seg_training_acc_ph = tf.compat.v1.placeholder(tf.float32, shape=())

InvisiFall 86

 seg_testing_acc_ph = tf.compat.v1.placeholder(tf.float32, shape=())

 seg_testing_acc_avg_cat_ph = tf.compat.v1.placeholder(tf.float32,

shape=())

 total_train_loss_sum_op =

tf.compat.v1.summary.scalar('total_training_loss', total_training_loss_ph)

 total_test_loss_sum_op =

tf.compat.v1.summary.scalar('total_testing_loss', total_testing_loss_ph)

 label_train_loss_sum_op =

tf.compat.v1.summary.scalar('label_training_loss', label_training_loss_ph)

 label_test_loss_sum_op =

tf.compat.v1.summary.scalar('label_testing_loss', label_testing_loss_ph)

 seg_train_loss_sum_op =

tf.compat.v1.summary.scalar('seg_training_loss', seg_training_loss_ph)

 seg_test_loss_sum_op =

tf.compat.v1.summary.scalar('seg_testing_loss', seg_testing_loss_ph)

 label_train_acc_sum_op =

tf.compat.v1.summary.scalar('label_training_acc', label_training_acc_ph)

 label_test_acc_sum_op =

tf.compat.v1.summary.scalar('label_testing_acc', label_testing_acc_ph)

 label_test_acc_avg_cat_op =

tf.compat.v1.summary.scalar('label_testing_acc_avg_cat',

label_testing_acc_avg_cat_ph)

 seg_train_acc_sum_op =

tf.compat.v1.summary.scalar('seg_training_acc', seg_training_acc_ph)

 seg_test_acc_sum_op = tf.compat.v1.summary.scalar('seg_testing_acc',

seg_testing_acc_ph)

 seg_test_acc_avg_cat_op =

tf.compat.v1.summary.scalar('seg_testing_acc_avg_cat',

seg_testing_acc_avg_cat_ph)

 train_variables = tf.compat.v1.trainable_variables()

 trainer = tf.compat.v1.train.AdamOptimizer(learning_rate)

 train_op = trainer.minimize(loss, var_list=train_variables,

global_step=batch)

 saver = tf.compat.v1.train.Saver()

 config = tf.compat.v1.ConfigProto()

 config.gpu_options.allow_growth = True

InvisiFall 87

 config.allow_soft_placement = True

 sess = tf.compat.v1.Session(config=config)

 init = tf.compat.v1.global_variables_initializer()

 sess.run(init)

 train_writer = tf.compat.v1.summary.FileWriter(SUMMARIES_FOLDER +

'/train', sess.graph)

 test_writer = tf.compat.v1.summary.FileWriter(SUMMARIES_FOLDER + '/test')

 print(train_writer)

 train_file_list = provider.getDataFiles(TRAINING_FILE_LIST)

 num_train_file = len(train_file_list)

 test_file_list = provider.getDataFiles(TESTING_FILE_LIST)

 num_test_file = len(test_file_list)

 fcmd = open(os.path.join(LOG_STORAGE_PATH, 'cmd.txt'), 'w')

 fcmd.write(str(FLAGS))

 fcmd.close()

 # write logs to the disk

 flog = open(os.path.join(LOG_STORAGE_PATH, 'log.txt'), 'w')

 def train_one_epoch(train_file_idx, epoch_num):

 is_training = True

 for i in range(num_train_file):

 cur_train_filename = os.path.join(hdf5_data_dir,

train_file_list[train_file_idx[i]])

 printout(flog, 'Loading train file ' + cur_train_filename)

 cur_data, cur_labels, cur_seg =

provider.loadDataFile_with_seg(cur_train_filename)

 cur_data, cur_labels, order = provider.shuffle_data(cur_data,

np.squeeze(cur_labels))

 cur_seg = cur_seg[order, ...]

 cur_labels_one_hot = convert_label_to_one_hot(cur_labels)

 num_data = len(cur_labels)

 num_batch = num_data // batch_size

 total_loss = 0.0

 total_label_loss = 0.0

 total_seg_loss = 0.0

 total_label_acc = 0.0

InvisiFall 88

 total_seg_acc = 0.0

 for j in range(num_batch):

 begidx = j * batch_size

 endidx = (j + 1) * batch_size

 feed_dict = {

 pointclouds_ph: cur_data[begidx: endidx, ...],

 labels_ph: cur_labels[begidx: endidx, ...],

 input_label_ph: cur_labels_one_hot[begidx: endidx,

...],

 seg_ph: cur_seg[begidx: endidx, ...],

 is_training_ph: is_training,

 }

 _, loss_val, label_loss_val, seg_loss_val,

per_instance_label_loss_val, \

 per_instance_seg_loss_val, label_pred_val,

seg_pred_val, pred_seg_res \

 = sess.run([train_op, loss, label_loss, seg_loss,

per_instance_label_loss, \

 per_instance_seg_loss, labels_pred, seg_pred,

per_instance_seg_pred_res], \

 feed_dict=feed_dict)

 per_instance_part_acc = np.mean(pred_seg_res ==

cur_seg[begidx: endidx, ...], axis=1)

 average_part_acc = np.mean(per_instance_part_acc)

 total_loss += loss_val

 total_label_loss += label_loss_val

 total_seg_loss += seg_loss_val

 per_instance_label_pred = np.argmax(label_pred_val, axis=1)

 total_label_acc += np.mean(np.float32(per_instance_label_pred

== cur_labels[begidx: endidx, ...]))

 total_seg_acc += average_part_acc

 total_loss = total_loss * 1.0 / num_batch

 total_label_loss = total_label_loss * 1.0 / num_batch

 total_seg_loss = total_seg_loss * 1.0 / num_batch

 total_label_acc = total_label_acc * 1.0 / num_batch

 total_seg_acc = total_seg_acc * 1.0 / num_batch

InvisiFall 89

 lr_sum, bn_decay_sum, batch_sum, train_loss_sum,

train_label_acc_sum, \

 train_label_loss_sum, train_seg_loss_sum,

train_seg_acc_sum = sess.run(\

 [lr_op, bn_decay_op, batch_op, total_train_loss_sum_op,

label_train_acc_sum_op, \

 label_train_loss_sum_op, seg_train_loss_sum_op,

seg_train_acc_sum_op], \

 feed_dict={total_training_loss_ph: total_loss,

label_training_loss_ph: total_label_loss, \

 seg_training_loss_ph: total_seg_loss,

label_training_acc_ph: total_label_acc, \

 seg_training_acc_ph: total_seg_acc})

 train_writer.add_summary(train_loss_sum, i + epoch_num *

num_train_file)

 train_writer.add_summary(train_label_loss_sum, i + epoch_num *

num_train_file)

 train_writer.add_summary(train_seg_loss_sum, i + epoch_num *

num_train_file)

 train_writer.add_summary(lr_sum, i + epoch_num * num_train_file)

 train_writer.add_summary(bn_decay_sum, i + epoch_num *

num_train_file)

 train_writer.add_summary(train_label_acc_sum, i + epoch_num *

num_train_file)

 train_writer.add_summary(train_seg_acc_sum, i + epoch_num *

num_train_file)

 train_writer.add_summary(batch_sum, i + epoch_num *

num_train_file)

 print("==

=========")

 printout(flog, '\tTraining Total Mean_loss: %f' % total_loss)

 printout(flog, '\t\tTraining Label Mean_loss: %f' %

total_label_loss)

 printout(flog, '\t\tTraining Label Accuracy: %f' %

total_label_acc)

 printout(flog, '\t\tTraining Seg Mean_loss: %f' % total_seg_loss)

 printout(flog, '\t\tTraining Seg Accuracy: %f' % total_seg_acc)

 def eval_one_epoch(epoch_num):

 is_training = False

 total_loss = 0.0

 total_label_loss = 0.0

InvisiFall 90

 total_seg_loss = 0.0

 total_label_acc = 0.0

 total_seg_acc = 0.0

 total_seen = 0

 total_label_acc_per_cat =

np.zeros((NUM_CATEGORIES)).astype(np.float32)

 total_seg_acc_per_cat = np.zeros((NUM_CATEGORIES)).astype(np.float32)

 total_seen_per_cat = np.zeros((NUM_CATEGORIES)).astype(np.int32)

 for i in range(num_test_file):

 cur_test_filename = os.path.join(hdf5_data_dir,

test_file_list[i])

 printout(flog, 'Loading test file ' + cur_test_filename)

 cur_data, cur_labels, cur_seg =

provider.loadDataFile_with_seg(cur_test_filename)

 cur_labels = np.squeeze(cur_labels)

 cur_labels_one_hot = convert_label_to_one_hot(cur_labels)

 num_data = len(cur_labels)

 num_batch = num_data // batch_size

 for j in range(num_batch):

 begidx = j * batch_size

 endidx = (j + 1) * batch_size

 feed_dict = {

 pointclouds_ph: cur_data[begidx: endidx, ...],

 labels_ph: cur_labels[begidx: endidx, ...],

 input_label_ph: cur_labels_one_hot[begidx: endidx,

...],

 seg_ph: cur_seg[begidx: endidx, ...],

 is_training_ph: is_training,

 }

 loss_val, label_loss_val, seg_loss_val,

per_instance_label_loss_val, \

 per_instance_seg_loss_val, label_pred_val,

seg_pred_val, pred_seg_res \

 = sess.run([loss, label_loss, seg_loss,

per_instance_label_loss, \

 per_instance_seg_loss, labels_pred, seg_pred,

per_instance_seg_pred_res], \

 feed_dict=feed_dict)

InvisiFall 91

 per_instance_part_acc = np.mean(pred_seg_res ==

cur_seg[begidx: endidx, ...], axis=1)

 average_part_acc = np.mean(per_instance_part_acc)

 total_seen += 1

 total_loss += loss_val

 total_label_loss += label_loss_val

 total_seg_loss += seg_loss_val

 per_instance_label_pred = np.argmax(label_pred_val, axis=1)

 total_label_acc += np.mean(np.float32(per_instance_label_pred

== cur_labels[begidx: endidx, ...]))

 total_seg_acc += average_part_acc

 for shape_idx in range(begidx, endidx):

 total_seen_per_cat[cur_labels[shape_idx]] += 1

 total_label_acc_per_cat[cur_labels[shape_idx]] +=

np.int32(per_instance_label_pred[shape_idx-begidx] == cur_labels[shape_idx])

 total_seg_acc_per_cat[cur_labels[shape_idx]] +=

per_instance_part_acc[shape_idx - begidx]

 total_loss = total_loss * 1.0 / total_seen

 total_label_loss = total_label_loss * 1.0 / total_seen

 total_seg_loss = total_seg_loss * 1.0 / total_seen

 total_label_acc = total_label_acc * 1.0 / total_seen

 total_seg_acc = total_seg_acc * 1.0 / total_seen

 test_loss_sum, test_label_acc_sum, test_label_loss_sum,

test_seg_loss_sum, test_seg_acc_sum = sess.run(\

 [total_test_loss_sum_op, label_test_acc_sum_op,

label_test_loss_sum_op, seg_test_loss_sum_op, seg_test_acc_sum_op], \

 feed_dict={total_testing_loss_ph: total_loss,

label_testing_loss_ph: total_label_loss, \

 seg_testing_loss_ph: total_seg_loss, label_testing_acc_ph:

total_label_acc, seg_testing_acc_ph: total_seg_acc})

 test_writer.add_summary(test_loss_sum, (epoch_num+1) *

num_train_file-1)

 test_writer.add_summary(test_label_loss_sum, (epoch_num+1) *

num_train_file-1)

 test_writer.add_summary(test_seg_loss_sum, (epoch_num+1) *

num_train_file-1)

 test_writer.add_summary(test_label_acc_sum, (epoch_num+1) *

num_train_file-1)

InvisiFall 92

 test_writer.add_summary(test_seg_acc_sum, (epoch_num+1) *

num_train_file-1)

 printout(flog, '\tTesting Total Mean_loss: %f' % total_loss)

 printout(flog, '\t\tTesting Label Mean_loss: %f' % total_label_loss)

 printout(flog, '\t\tTesting Label Accuracy: %f' % total_label_acc)

 printout(flog, '\t\tTesting Seg Mean_loss: %f' % total_seg_loss)

 printout(flog, '\t\tTesting Seg Accuracy: %f' % total_seg_acc)

 for cat_idx in range(NUM_CATEGORIES):

 if total_seen_per_cat[cat_idx] > 0:

 printout(flog, '\n\t\tCategory %s Object Number: %d' %

(all_obj_cats[cat_idx][0], total_seen_per_cat[cat_idx]))

 printout(flog, '\t\tCategory %s Label Accuracy: %f' %

(all_obj_cats[cat_idx][0],

total_label_acc_per_cat[cat_idx]/total_seen_per_cat[cat_idx]))

 printout(flog, '\t\tCategory %s Seg Accuracy: %f' %

(all_obj_cats[cat_idx][0],

total_seg_acc_per_cat[cat_idx]/total_seen_per_cat[cat_idx]))

 if not os.path.exists(MODEL_STORAGE_PATH):

 os.mkdir(MODEL_STORAGE_PATH)

 for epoch in range(TRAINING_EPOCHES):

 printout(flog, '\n<<< Testing on the test dataset ...')

 eval_one_epoch(epoch)

 printout(flog, '\n>>> Training for the epoch %d/%d ...' % (epoch,

TRAINING_EPOCHES))

 train_file_idx = np.arange(0, len(train_file_list))

 np.random.shuffle(train_file_idx)

 train_one_epoch(train_file_idx, epoch)

 if (epoch+1) % 10 == 0:

 cp_filename = saver.save(sess, os.path.join(MODEL_STORAGE_PATH,

'epoch_' + str(epoch+1)+'.ckpt'))

 printout(flog, 'Successfully store the checkpoint model into ' +

cp_filename)

 flog.flush()

 flog.close()

InvisiFall 93

if __name__=='__main__':

 train()

InvisiFall 94

Appendix D:

Class autoencoder_mdl, compute_metric, function proposed_oversampling in

data_preproc are originally coded by Dr Feng Jin et al from

https://github.com/radar-lab/mmfall

import serial
import time
import numpy as np
import pyqtgraph as pg
from pyqtgraph.Qt import QtGui
import matplotlib.pyplot as plt
import serial
import time
import numpy as np
import pyqtgraph as pg
from pyqtgraph.Qt import QtGui
import sys
from PyQt5 import QtGui, QtWidgets, QtCore
from pyqtgraph.opengl import GLViewWidget, GLScatterPlotItem
import csv
import pandas as pd
import argparse, os

import random as rn
import tensorflow as tf
from keras import backend as K
from keras import optimizers
from keras.layers import Input, Dense, Flatten, Lambda, Concatenate, Reshape, \
 TimeDistributed, LSTM, RepeatVector, SimpleRNN, Activation
from keras.models import Model, load_model
from keras.callbacks import TensorBoard
from keras.losses import mse
from keras.utils import plot_model
from scipy.signal import find_peaks
#from sklearn.metrics import confusion_matrix
import pandas as pd
from tensorflow.keras import layers
from scipy.signal import butter, filtfilt
import glob
import subprocess

from keras.layers import Layer
from tensorflow.python.framework.ops import disable_eager_execution

disable_eager_execution()

InvisiFall 95

class data_preproc:
 def __init__(self):
 self.frames_per_pattern = 20
 self.points_per_frame = 64
 self.features_per_point = 4
 self.split_ratio = 0.8
 tilt_angle = -10.0
 self.height = 2
 self.rotation_matrix = np.array([[1.0, 0.0, 0.0],
 [0.0, np.cos(np.deg2rad(tilt_angle)), -

np.sin(np.deg2rad(tilt_angle))],
 [0.0, np.sin(np.deg2rad(tilt_angle)),

np.cos(np.deg2rad(tilt_angle))]])

 def load_csv(self, data_frame, anomaly=False):
 centroidX_his = []
 centroidY_his = []
 centroidZ_his = []
 total_processed_pattern = []

 df = data_frame

 # Number of frames to process at once
 frames_batch_size = 20

 # Get unique frame numbers
 unique_frames = df['Frame Number'].unique()

 num_complete_batches = len(unique_frames) // frames_batch_size
 # Loop over the complete batches
 for batch_num in range(num_complete_batches):
 start = batch_num * frames_batch_size
 end = start + frames_batch_size
 frame_numbers = unique_frames[start:end]
 processed_pattern = [] # This will hold all processed frames in the

current batch

 for frame_number in frame_numbers:
 group = df[df['Frame Number'] == frame_number]

 if len(group) > self.points_per_frame:
 continue

 centroid = group[['X', 'Y', 'Z']].mean().to_numpy()
 centroidx = centroid[0]

InvisiFall 96

 centroidy = centroid[1]
 centroidz = centroid[2]
 results = np.matmul(self.rotation_matrix,

np.array([centroidx,centroidy,centroidz]))
 centroidx = results[0]
 centroidy = results[1]
 centroidz = results[2] + self.height

 centroidX_his.append(centroidx)
 centroidY_his.append(centroidy)
 centroidZ_his.append(centroidz)

 processed_frame = []
 for _, row in group.iterrows():
 # Apply rotation and adjust for height
 point = row[['X', 'Y', 'Z']].to_numpy()
 rotated_point = np.matmul(self.rotation_matrix, row[['X',

'Y', 'Z']].to_numpy())
 pointX, pointY, pointZ = rotated_point + np.array([0, 0,

self.height])

 # Calculate deltas
 delta_x = pointX - centroidx
 delta_y = pointY - centroidy
 delta_z = pointZ
 delta_D = row['velocity']

 # Form the feature vector
 feature_vector = [delta_x, delta_y, delta_z, delta_D]
 processed_frame.append(feature_vector)

 processed_pattern.append(processed_frame)

 if len(processed_pattern) == frames_batch_size:
 processed_pattern_oversampled =

self.proposed_oversampling(processed_pattern)
 total_processed_pattern.append(processed_pattern_oversampled)

 total_processed_pattern_np = np.array(total_processed_pattern)

 # Split data into training and testing sets
 split_idx = int(total_processed_pattern_np.shape[0] * self.split_ratio)
 train_data = total_processed_pattern_np[:split_idx]
 test_data = total_processed_pattern_np[split_idx:]

InvisiFall 97

 if anomaly == False:
 print("INFO: Total normal motion pattern data shape: " +

str(total_processed_pattern_np.shape))
 print("INFO: Training motion pattern data shape" +

str(train_data.shape))
 print("INFO: Testing motion pattern data shape" +

str(test_data.shape))
 # Return training and testing data along with centroid histories for

normal dataset
 return train_data, test_data, centroidZ_his
 else:
 # Return processed pattern and centroid histories for anomaly dataset
 print("INFO: Total inference motion pattern data shape: " +

str(total_processed_pattern_np.shape))
 return total_processed_pattern_np, centroidZ_his

 def proposed_oversampling(self, processed_pointcloud):
 # Do data oversampling
 processed_pointcloud_oversampled = []
 for frame in processed_pointcloud:
 frame_np = np.array(frame)

 # Check if it's empty frame
 N = self.points_per_frame
 M = frame_np.shape[0]
 assert (M != 0), "ERROR: empty frame detected!"

 # Rescale and padding
 mean = np.mean(frame_np, axis=0)
 sigma = np.std(frame_np, axis=0)
 frame_np = np.sqrt(N/M)*frame_np + mean - np.sqrt(N/M)*mean #

Rescale
 frame_oversampled = frame_np.tolist()
 frame_oversampled.extend([mean]*(N-M)) # Padding with mean
 processed_pointcloud_oversampled.append(frame_oversampled)

 processed_pointcloud_oversampled_np =

np.array(processed_pointcloud_oversampled)

 assert (processed_pointcloud_oversampled_np.shape[-2] ==

self.points_per_frame), ("ERROR: The new_frame_data has different number of

points per frame rather than %s!" %(self.points_per_frame))

InvisiFall 98

 assert (processed_pointcloud_oversampled_np.shape[-1] ==

self.features_per_point), ("ERROR: The new_frame_data has different feature

length rather than %s!" %(self.features_per_point))

 return processed_pointcloud_oversampled_np

class SamplingLayer(layers.Layer):
 """Sampling layer for Variational Autoencoder"""
 def call(self, inputs):
 z_mean, z_log_var = inputs
 batch = tf.shape(z_mean)[0]
 dim1 = tf.shape(z_mean)[1] # Additional dimensions if present
 dim2 = tf.shape(z_mean)[2] # You adjust this based on your specific

needs

 # Adjust the shape of epsilon based on the shape of your z_mean and

z_log_var
 epsilon = tf.keras.backend.random_normal(shape=(batch, dim1, dim2))
 return z_mean + tf.exp(0.5 * z_log_var) * epsilon

class autoencoder_mdl:
 def __init__(self, model_dir):
 self.model_dir = model_dir

 # Variational Recurrent Autoencoder (HVRAE)
 def HVRAE_train(self, train_data, test_data):
 # In one motion pattern we have
 n_frames = 20
 n_points = 64
 n_features = 4

 # Dimension is going down for encoding. Decoding is just a reflection of

encoding.
 n_intermidiate = 64
 n_latentdim = 16

 # Define input
 inputs = Input(shape=(n_frames, n_points, n_features))
 input_flatten = TimeDistributed(Flatten(None))(inputs)

 # VAE: q(z|X). Input: motion pattern. Output: mean and log(sigma^2) for

q(z|X).
 input_flatten = TimeDistributed(Dense(n_intermidiate,

activation='tanh'))(input_flatten)

InvisiFall 99

 Z_mean = TimeDistributed(Dense(n_latentdim,

activation=None), name='qzx_mean')(input_flatten)
 Z_log_var = TimeDistributed(Dense(n_latentdim,

activation=None), name='qzx_log_var')(input_flatten)

 Z = SamplingLayer()([Z_mean, Z_log_var])

 # RNN Autoencoder. Output: reconstructed z.
 encoder_feature = SimpleRNN(n_latentdim, activation='tanh',

return_sequences=False)(Z)
 decoder_feature = RepeatVector(n_frames)(encoder_feature)
 decoder_feature = SimpleRNN(n_latentdim, activation='tanh',

return_sequences=True)(decoder_feature)
 decoder_feature = Lambda(lambda x: tf.reverse(x, axis=[-

2]))(decoder_feature)

 # VAE: p(X|z). Output: mean and log(sigma^2) for p(X|z).
 X_latent = TimeDistributed(Dense(n_intermidiate,

activation='tanh'))(decoder_feature)
 pXz_mean = TimeDistributed(Dense(n_features,

activation=None))(X_latent)
 pXz_logvar = TimeDistributed(Dense(n_features,

activation=None))(X_latent)

 # Reshape the output. Output: (n_frames, n_points, n_features*2).
 # In each frame, every point has a corresponding mean vector with length

of n_features and a log(sigma^2) vector with length of n_features.
 pXz = Concatenate()([pXz_mean, pXz_logvar])
 pXz = TimeDistributed(RepeatVector(n_points))(pXz)
 outputs = TimeDistributed(Reshape((n_points,

n_features*2)))(pXz)

 # Build the model
 self.HVRAE_mdl = Model(inputs, outputs)
 print(self.HVRAE_mdl.summary())

 # Calculate HVRAE loss proposed in the paper
 def HVRAE_loss(y_true, y_pred):
 batch_size = K.shape(y_true)[0]
 n_frames = K.shape(y_true)[1]
 n_features = K.shape(y_true)[-1]

 mean = y_pred[:, :, :, :n_features]
 logvar = y_pred[:, :, :, n_features:]
 var = K.exp(logvar)

InvisiFall 100

 y_true_reshape = K.reshape(y_true, (batch_size, n_frames, -1))
 mean = K.reshape(mean, (batch_size, n_frames, -1))
 var = K.reshape(var, (batch_size, n_frames, -1))
 logvar = K.reshape(logvar, (batch_size, n_frames, -1))

 # E[log_pXz] ~= log_pXz
 log_pXz = K.square(y_true_reshape - mean)/var
 log_pXz = K.sum(0.5*log_pXz, axis=-1)

 # KL divergence between q(z|x) and p(z)
 kl_loss = -0.5 * K.sum(1 + Z_log_var - K.square(Z_mean) -

K.exp(Z_log_var), axis=-1)

 # HVRAE loss is log_pXz + kl_loss
 HVRAE_loss = K.mean(log_pXz + kl_loss) # Do mean over batches
 return HVRAE_loss

 # Define stochastic gradient descent optimizer Adam
 adam = optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999,

amsgrad=False)
 # Compile the model
 self.HVRAE_mdl.compile(optimizer=adam, loss=HVRAE_loss)

 # Train the model
 self.HVRAE_mdl.fit(train_data, train_data, # Train on the normal training

dataset in an unsupervised way
 epochs=20,
 batch_size=8,
 shuffle=False,
 validation_data=(test_data, test_data), # Testing on the normal

tesing dataset
 callbacks=[TensorBoard(log_dir=(self.model_dir))])
 self.HVRAE_mdl.save(self.model_dir + 'HVRAE_mdl.h5')
 print("INFO: Training is done!")

print("***")

 def HVRAE_predict(self, inferencedata):# add reltime centroid z
 K.clear_session()

 def sampling_predict(args): # Instead of sampling from Q(z|X), sample

epsilon = N(0,I), z = z_mean + sqrt(var) * epsilon
 Z_mean, Z_log_var = args
 batch_size = K.shape(Z_mean)[0]

InvisiFall 101

 n_frames = K.int_shape(Z_mean)[1]
 n_latentdim = K.int_shape(Z_mean)[2]
 # For reproducibility, we set the seed=37
 epsilon = K.random_normal(shape=(batch_size, n_frames,

n_latentdim), mean=0., stddev=1.0, seed=None)
 Z = Z_mean + K.exp(0.5*Z_log_var) * epsilon # The

reparameterization trick
 return Z

 # Load saved model
 model = load_model(self.model_dir + 'HVRAE_mdl_all.h5', compile = False,

custom_objects={'SamplingLayer': SamplingLayer, 'tf': tf})
 adam = optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999,

amsgrad=False)
 model.compile(optimizer=adam, loss=mse)
 print("INFO: Model loaded from " + self.model_dir + 'HVRAE_mdl.h5')

 get_z_mean_model = Model(inputs=model.input,

outputs=model.get_layer('qzx_mean').output)
 get_z_log_var_model = Model(inputs=model.input,

outputs=model.get_layer('qzx_log_var').output)

 # Numpy version of HVRAE_loss function
 def HVRAE_loss(y_true, y_pred, Z_mean, Z_log_var):
 batch_size = y_true.shape[0]
 n_frames = y_true.shape[1]
 n_features = y_true.shape[-1]

 mean = y_pred[:, :, :, :n_features]
 logvar = y_pred[:, :, :, n_features:]
 var = np.exp(logvar)

 y_true_reshape = np.reshape(y_true, (batch_size, n_frames, -1))
 mean = np.reshape(mean, (batch_size, n_frames, -1))
 var = np.reshape(var, (batch_size, n_frames, -1))
 logvar = np.reshape(logvar, (batch_size, n_frames, -1))

 # E[log_pXz] ~= log_pXz
 # log_pXz = K.square(y_true_reshape-mean)/var + logvar
 log_pXz = np.square(y_true_reshape - mean)/var
 log_pXz = np.sum(0.5*log_pXz, axis=-1)

 # KL divergence between q(z|x) and p(z)
 kl_loss = -0.5 * np.sum(1 + Z_log_var - np.square(Z_mean) -

np.exp(Z_log_var), axis=-1)

InvisiFall 102

 # HVRAE loss is log_pXz + kl_loss
 HVRAE_loss = np.mean(log_pXz + kl_loss) # Do mean over batches
 return HVRAE_loss

 print("INFO: Start to predict...")
 prediction_history = []
 loss_history = []
 for pattern in inferencedata:
 pattern = np.expand_dims(pattern, axis=0)
 current_prediction = model.predict(pattern, batch_size=1)
 predicted_z_mean = get_z_mean_model.predict(pattern, batch_size=1)
 predicted_z_log_var = get_z_log_var_model.predict(pattern,

batch_size=1)
 current_loss = HVRAE_loss(pattern, current_prediction,

predicted_z_mean, predicted_z_log_var)
 loss_history.append(current_loss)
 print("INFO: Prediction is done!")

 return loss_history

class compute_metric:
 def __init__(self):
 pass

 def detect_falls(self, loss_history, centroidZ_history, threshold):
 assert len(loss_history) == len(centroidZ_history), "ERROR: The length of

loss history is different than the length of centroidZ history!"
 seq_len = len(loss_history)
 win_len = 40 # Detection window length on account of 2

seconds for 20 fps radar rate
 centroidZ_dropthres = 1.0
 i = int(win_len/2)
 detected_falls_idx = []
 # Firstly, detect the fall centers based on the centroidZ drop
 while i < (seq_len - win_len/2):
 detection_window_middle = i
 detection_window_lf_edge = int(detection_window_middle - win_len/2)
 detection_window_rh_edge = int(detection_window_middle + win_len/2)
 # Search the centroidZ drop
 if centroidZ_history[detection_window_lf_edge] -

centroidZ_history[detection_window_rh_edge] >= centroidZ_dropthres:
 detected_falls_idx.append(int(detection_window_middle))
 i += 1

InvisiFall 103

 # Secondly, if a sequence of fall happen within a window less than

win_len, we combine these falls into one fall centered at the middle of this

sequence
 i = 0
 processed_detected_falls_idx = []
 while i < len(detected_falls_idx):
 j = i
 while True:
 if j == len(detected_falls_idx):
 break
 if detected_falls_idx[j] - detected_falls_idx[i] > win_len:
 break
 j += 1
 processed_detected_falls_idx.append(int((detected_falls_idx[i] +

detected_falls_idx[j-1])/2))
 i = j

 # Thirdly, find id there is an anomaly level (or loss history) spike in

the detection window
 ones_idx =

np.argwhere(np.array(loss_history)>=threshold).flatten()
 fall_binseq = np.zeros(seq_len)
 fall_binseq[ones_idx] = 1
 final_detected_falls_idx = []
 i = 0
 while i < len(processed_detected_falls_idx):
 detection_window_middle = int(processed_detected_falls_idx[i])
 detection_window_lf_edge = int(detection_window_middle - win_len/2)
 detection_window_rh_edge = int(detection_window_middle + win_len/2)
 if 1 in

fall_binseq[detection_window_lf_edge:detection_window_rh_edge]:
 final_detected_falls_idx.append(processed_detected_falls_idx[i])
 i += 1

 return final_detected_falls_idx, len(processed_detected_falls_idx)

 def find_tpfpfn(self, detected_falls_idx, gt_falls_idx):
 n_detected_falls = len(detected_falls_idx)
 falls_tp = []
 falls_fp = []
 falls_fn = list(gt_falls_idx)
 win_len = 20
 for i in range(n_detected_falls):
 n_gt_falls = len(falls_fn)
 j = 0

InvisiFall 104

 while j < n_gt_falls:
 # Find a gt fall index whose window covers the detected fall

index, so it's true positive
 if int(falls_fn[j]-win_len/2) <= detected_falls_idx[i] <=

int(falls_fn[j]+win_len/2):
 # Remove the true positive from the gt_falls_idx list,

finally only false negative remains
 falls_fn.pop(j)
 falls_tp.append(i)
 break
 j += 1
 # Dn not find a gt fall index whose window covers the detected fall

index, so it's false positive
 if j == n_gt_falls:
 falls_fp.append(i)

 return falls_tp, falls_fp, falls_fn

 def cal_roc(self, loss_history, centroidZ_history, gt_falls_idx):
 n_gt_falls = len(gt_falls_idx)
 print("How many falls?", n_gt_falls)
 tpr, fpr = [], []
 for threshold in np.arange(0.0, 10.0, 0.1):
 detected_falls_idx, _ = self.detect_falls(loss_history,

centroidZ_history, threshold)
 falls_tp, falls_fp, falls_fn =

self.find_tpfpfn(detected_falls_idx, gt_falls_idx)
 # Save the true positve rate for this threshold.
 tpr.append(len(falls_tp)/n_gt_falls)
 # Save the number of false positve, or missed fall detection, for

this threshold
 fpr.append(len(falls_fp))
 return tpr, fpr

Change the configuration file name
configFileName = 'IWR1443_profile_Optimized.cfg'
csv_file_path = 'radar_data.csv'
CLIport = {}
Dataport = {}
byteBuffer = np.zeros(2**15,dtype = 'uint8')
byteBufferLength = 0

--

InvisiFall 105

Function to configure the serial ports and send the data from
the configuration file to the radar
def serialConfig(configFileName):

 global CLIport
 global Dataport
 # Open the serial ports for the configuration and the data ports

 # Raspberry pi
 CLIport = serial.Serial('COM4', 115200)
 Dataport = serial.Serial('COM3', 921600)

 # Windows
 # CLIport = serial.Serial('COM4', 115200)
 # Dataport = serial.Serial('COM3', 921600)

 # Read the configuration file and send it to the board
 config = [line.rstrip('\r\n') for line in open(configFileName)]
 for i in config:
 CLIport.write((i+'\n').encode())
 print(i)
 time.sleep(0.01)

 return CLIport, Dataport

--

Function to parse the data inside the configuration file
def parseConfigFile(configFileName):
 configParameters = {} # Initialize an empty dictionary to store the

configuration parameters

 # Read the configuration file and send it to the board
 config = [line.rstrip('\r\n') for line in open(configFileName)]
 for i in config:

 # Split the line
 splitWords = i.split(" ")

 # Hard code the number of antennas, change if other configuration is used
 numRxAnt = 4
 numTxAnt = 3

 # Get the information about the profile configuration
 if "profileCfg" in splitWords[0]:

InvisiFall 106

 startFreq = int(float(splitWords[2]))
 idleTime = int(splitWords[3])
 rampEndTime = float(splitWords[5])
 freqSlopeConst = float(splitWords[8])
 numAdcSamples = int(splitWords[10])
 numAdcSamplesRoundTo2 = 1;

 while numAdcSamples > numAdcSamplesRoundTo2:
 numAdcSamplesRoundTo2 = numAdcSamplesRoundTo2 * 2;

 digOutSampleRate = int(splitWords[11]);

 # Get the information about the frame configuration
 elif "frameCfg" in splitWords[0]:

 chirpStartIdx = int(splitWords[1]);
 chirpEndIdx = int(splitWords[2]);
 numLoops = int(splitWords[3]);
 numFrames = int(splitWords[4]);
 framePeriodicity = int(splitWords[5]);

 # Combine the read data to obtain the configuration parameters
 numChirpsPerFrame = (chirpEndIdx - chirpStartIdx + 1) * numLoops
 configParameters["numDopplerBins"] = numChirpsPerFrame / numTxAnt
 configParameters["numRangeBins"] = numAdcSamplesRoundTo2
 configParameters["rangeResolutionMeters"] = (3e8 * digOutSampleRate * 1e3) /

(2 * freqSlopeConst * 1e12 * numAdcSamples)
 configParameters["rangeIdxToMeters"] = (3e8 * digOutSampleRate * 1e3) / (2 *

freqSlopeConst * 1e12 * configParameters["numRangeBins"])
 configParameters["dopplerResolutionMps"] = 3e8 / (2 * startFreq * 1e9 *

(idleTime + rampEndTime) * 1e-6 * configParameters["numDopplerBins"] * numTxAnt)
 configParameters["maxRange"] = (300 * 0.9 * digOutSampleRate)/(2 *

freqSlopeConst * 1e3)

 configParameters["maxVelocity"] = 3e8 / (4 * startFreq * 1e9 * (idleTime +

rampEndTime) * 1e-6 * numTxAnt)

 return configParameters

--

Funtion to read and parse the incoming data
def readAndParseData14xx(Dataport, configParameters):
 global byteBuffer, byteBufferLength

InvisiFall 107

 # Constants
 OBJ_STRUCT_SIZE_BYTES = 12;
 BYTE_VEC_ACC_MAX_SIZE = 2**15;
 MMWDEMO_UART_MSG_DETECTED_POINTS = 1;
 MMWDEMO_UART_MSG_RANGE_PROFILE = 2;
 maxBufferSize = 2**15;
 magicWord = [2, 1, 4, 3, 6, 5, 8, 7]

 # Initialize variables
 magicOK = 0 # Checks if magic number has been read
 dataOK = 0 # Checks if the data has been read correctly
 frameNumber = 0
 detObj = {}

 readBuffer = Dataport.read(Dataport.in_waiting)
 byteVec = np.frombuffer(readBuffer, dtype = 'uint8')
 byteCount = len(byteVec)

 # Check that the buffer is not full, and then add the data to the buffer
 if (byteBufferLength + byteCount) < maxBufferSize:
 byteBuffer[byteBufferLength:byteBufferLength + byteCount] =

byteVec[:byteCount]
 byteBufferLength = byteBufferLength + byteCount

 # Check that the buffer has some data
 if byteBufferLength > 16:

 # Check for all possible locations of the magic word
 possibleLocs = np.where(byteBuffer == magicWord[0])[0]

 # Confirm that is the beginning of the magic word and store the index in

startIdx
 startIdx = []
 for loc in possibleLocs:
 check = byteBuffer[loc:loc+8]
 if np.all(check == magicWord):
 startIdx.append(loc)

 # Check that startIdx is not empty
 if startIdx:

 # Remove the data before the first start index
 if startIdx[0] > 0 and startIdx[0] < byteBufferLength:
 byteBuffer[:byteBufferLength-startIdx[0]] =

byteBuffer[startIdx[0]:byteBufferLength]

InvisiFall 108

 byteBuffer[byteBufferLength-startIdx[0]:] =

np.zeros(len(byteBuffer[byteBufferLength-startIdx[0]:]),dtype = 'uint8')
 byteBufferLength = byteBufferLength - startIdx[0]

 # Check that there have no errors with the byte buffer length
 if byteBufferLength < 0:
 byteBufferLength = 0

 # word array to convert 4 bytes to a 32 bit number
 word = [1, 2**8, 2**16, 2**24]

 # Read the total packet length
 totalPacketLen = np.matmul(byteBuffer[12:12+4],word)

 # Check that all the packet has been read
 if (byteBufferLength >= totalPacketLen) and (byteBufferLength != 0):
 magicOK = 1

 # If magicOK is equal to 1 then process the message
 if magicOK:
 # word array to convert 4 bytes to a 32 bit number
 word = [1, 2**8, 2**16, 2**24]

 # Initialize the pointer index
 idX = 0

 # Read the header
 magicNumber = byteBuffer[idX:idX+8]
 idX += 8
 version = format(np.matmul(byteBuffer[idX:idX+4],word),'x')
 idX += 4
 totalPacketLen = np.matmul(byteBuffer[idX:idX+4],word)
 idX += 4
 platform = format(np.matmul(byteBuffer[idX:idX+4],word),'x')
 idX += 4
 frameNumber = np.matmul(byteBuffer[idX:idX+4],word)
 idX += 4
 timeCpuCycles = np.matmul(byteBuffer[idX:idX+4],word)
 idX += 4
 numDetectedObj = np.matmul(byteBuffer[idX:idX+4],word)
 idX += 4
 numTLVs = np.matmul(byteBuffer[idX:idX+4],word)
 idX += 4

InvisiFall 109

 # UNCOMMENT IN CASE OF SDK 2
 #subFrameNumber = np.matmul(byteBuffer[idX:idX+4],word)
 #idX += 4

 # Read the TLV messages
 for tlvIdx in range(numTLVs):

 # print('range tlv = ', tlvIdx)
 # word array to convert 4 bytes to a 32 bit number
 word = [1, 2**8, 2**16, 2**24]

 # Check the header of the TLV message
 tlv_type = np.matmul(byteBuffer[idX:idX+4],word)
 idX += 4
 tlv_length = np.matmul(byteBuffer[idX:idX+4],word)
 idX += 4

 # Read the data depending on the TLV message
 if tlv_type == MMWDEMO_UART_MSG_DETECTED_POINTS:

 # word array to convert 4 bytes to a 16 bit number
 word = [1, 2**8]
 tlv_numObj = np.matmul(byteBuffer[idX:idX+2],word)
 idX += 2
 tlv_xyzQFormat = 2**np.matmul(byteBuffer[idX:idX+2],word)
 # print('tlv_xyzQFormat',tlv_xyzQFormat)
 # print('tlv_numObj = ', tlv_numObj)
 #os.system('Pause')
 idX += 2

 # Initialize the arrays
 rangeIdx = np.zeros(tlv_numObj,dtype = 'int16')
 dopplerIdx = np.zeros(tlv_numObj,dtype = 'int16')
 peakVal = np.zeros(tlv_numObj,dtype = 'int16')
 x = np.zeros(tlv_numObj,dtype = 'int16')
 y = np.zeros(tlv_numObj,dtype = 'int16')
 z = np.zeros(tlv_numObj,dtype = 'int16')

 for objectNum in range(tlv_numObj):

 # Read the data for each object
 rangeIdx[objectNum] = np.matmul(byteBuffer[idX:idX+2],word)
 idX += 2
 dopplerIdx[objectNum] = np.matmul(byteBuffer[idX:idX+2],word)

InvisiFall 110

 idX += 2
 peakVal[objectNum] = np.matmul(byteBuffer[idX:idX+2],word)
 idX += 2
 x[objectNum] = np.matmul(byteBuffer[idX:idX+2],word)
 idX += 2
 y[objectNum] = np.matmul(byteBuffer[idX:idX+2],word)
 idX += 2
 z[objectNum] = np.matmul(byteBuffer[idX:idX+2],word)
 idX += 2

 # Make the necessary corrections and calculate the rest of the

data
 rangeVal = rangeIdx * configParameters["rangeIdxToMeters"]
 dopplerIdx[dopplerIdx > (configParameters["numDopplerBins"]/2 -

1)] = dopplerIdx[dopplerIdx > (configParameters["numDopplerBins"]/2 - 1)] - 65535
 dopplerVal = dopplerIdx *

configParameters["dopplerResolutionMps"]
 #x[x > 32767] = x[x > 32767] - 65536
 #y[y > 32767] = y[y > 32767] - 65536
 #z[z > 32767] = z[z > 32767] - 65536
 x = x / tlv_xyzQFormat
 y = y / tlv_xyzQFormat
 z = z / tlv_xyzQFormat

 # Store the data in the detObj dictionary
 detObj = {"numObj": tlv_numObj, "rangeIdx": rangeIdx, "range":

rangeVal, "dopplerIdx": dopplerIdx, \
 "doppler": dopplerVal, "peakVal": peakVal, "x": x, "y":

y, "z": z}

 dataOK = 1

 # Remove already processed data
 if idX > 0 and byteBufferLength > idX:
 shiftSize = totalPacketLen

 byteBuffer[:byteBufferLength - shiftSize] =

byteBuffer[shiftSize:byteBufferLength]
 byteBuffer[byteBufferLength - shiftSize:] =

np.zeros(len(byteBuffer[byteBufferLength - shiftSize:]),dtype = 'uint8')
 byteBufferLength = byteBufferLength - shiftSize

 # Check that there are no errors with the buffer length
 if byteBufferLength < 0:

InvisiFall 111

 byteBufferLength = 0

 return dataOK, frameNumber, detObj

############################### MAIN ####################################

import tensorflow as tf
import sys
import numpy as np
import pandas as pd
import pyqtgraph.opengl as gl
from PyQt5 import QtWidgets, QtCore
import tensorflow as tf
import serial
from pyqtgraph.Qt import QtGui
import pyqtgraph as pg

recent_predictions = []

current_frame_data = None
current_frame_number = None
fall_detected = False
Initialize global variables for frame data handling
current_frame_data = pd.DataFrame()
current_frame_number = -1

data_processor = data_preproc()

#------------------- GUI SET UP --
class RadarGUI(QtWidgets.QMainWindow):
 def __init__(self, parent=None):
 super(RadarGUI, self).__init__(parent)

 self.is_recording = False

 # Set up central widget and layout
 central_widget = QtWidgets.QWidget()
 self.setCentralWidget(central_widget)
 layout = QtWidgets.QVBoxLayout(central_widget)

 # Set up the 3D scatter plot widget and add it to the layout
 self.scatter_widget = gl.GLViewWidget()

InvisiFall 112

 layout.addWidget(self.scatter_widget)

 # Initialize the timer for resetting the fall indicator
 self.reset_timer = QtCore.QTimer(self)
 self.reset_timer.setSingleShot(True)
 self.reset_timer.timeout.connect(self.reset_fall_indicator)

 # Create and add a scatter plot item and a cube frame to the widget
 self.scatter = gl.GLScatterPlotItem()
 self.scatter_widget.addItem(self.scatter)
 cube_lines = self.create_cube(width=5, height=5, depth=3,

y_translation=2.5)
 for line_item in cube_lines:
 self.scatter_widget.addItem(line_item)

 # Configure the camera for an isometric view
 self.scatter_widget.setCameraPosition(distance=15, elevation=30,

azimuth=45)
 self.scatter_widget.opts['center'] = QtGui.QVector3D(-2, -0, -2) #

Adjust the 1 to your needs
 self.scatter_widget.update()

 # Create occupancy grid
 self.create_occupancy_grid(cube_width=5, cube_height=3, cube_depth=5,

grid_width=10, grid_height=10, spacing=0.5, cube_y_translation=0)

 # Bottom layout for button and fall indicator
 bottom_layout = QtWidgets.QHBoxLayout()
 bottom_layout.addStretch() # Add a spacer on the left side

 # Create the Start Recording button
 self.start_recording_button = QtWidgets.QPushButton("Start Detecting")
 button_size = 250 # Square button size
 self.start_recording_button.setFixedSize(button_size, button_size)
 self.start_recording_button.setStyleSheet("QPushButton { font-size:

18pt; }")
 bottom_layout.addWidget(self.start_recording_button)

 # Modify the fall detection indicator (label)
 self.fall_indicator = QtWidgets.QLabel("Monitoring...")
 self.fall_indicator.setAlignment(QtCore.Qt.AlignCenter)
 self.fall_indicator.setFixedSize(button_size, button_size)
 self.fall_indicator.setStyleSheet("QLabel { background-color: green;

border: 1px solid black; font-size: 18pt; }")
 bottom_layout.addWidget(self.fall_indicator)

InvisiFall 113

 bottom_layout.addStretch() # Add a spacer on the right side

 # Add the bottom layout to the main vertical layout
 layout.addLayout(bottom_layout)

 # Connect the button click to the start_recording method
 self.start_recording_button.clicked.connect(self.start_recording)

################ GUI Functions
 def start_recording(self):
 global radar_gui
 # Toggle the is_recording flag
 self.is_recording = not self.is_recording

 # Update button text based on the recording state
 if self.is_recording:
 self.start_recording_button.setText("Stop Detecting")
 # control_com_on()
 # radar_gui.update_fall_indicator(True) # Indicator turns red
 print("Fall Detection started.")
 else:
 self.start_recording_button.setText("Start Detecting")
 print("Fall Detection stopped.")
 # if not radar_gui.reset_timer.isActive():
 # radar_gui.update_fall_indicator(False)
 # control_com_off()

 def create_occupancy_grid(self, cube_width, cube_height, cube_depth,

grid_width, grid_height, spacing, cube_y_translation):
 # Calculate the center of the cube in the x and y dimensions
 cube_center_x = 0
 cube_center_y = 2.5

 # The z_position of the grid is the bottom of the cube
 z_position = cube_y_translation - (cube_height / 2)

 grid_color = (0.5, 0.5, 0.5, 1) # Light grey color for the grid lines
 lines = []

 # Starting point of the grid in the x and y dimensions
 grid_start_x = cube_center_x - (grid_width / 2)
 grid_start_y = cube_center_y - (grid_height / 2)

 # Horizontal lines (along the X-axis, varying Y)

InvisiFall 114

 for y in np.arange(grid_start_y, grid_start_y + grid_height + spacing,

spacing):
 start_vert = np.array([grid_start_x, y, z_position],

dtype=np.float32)
 end_vert = np.array([grid_start_x + grid_width, y, z_position],

dtype=np.float32)
 lines.append([start_vert, end_vert])

 # Vertical lines (along the Y-axis, varying X)
 for x in np.arange(grid_start_x, grid_start_x + grid_width + spacing,

spacing):
 start_vert = np.array([x, grid_start_y, z_position],

dtype=np.float32)
 end_vert = np.array([x, grid_start_y + grid_height, z_position],

dtype=np.float32)
 lines.append([start_vert, end_vert])

 # Create line plot items for each line in the grid
 for line_data in lines:
 line_item = gl.GLLinePlotItem(pos=np.array(line_data),

color=grid_color, width=1, antialias=True)
 self.scatter_widget.addItem(line_item)

 def update_scatter_plot(self, points, color=(0, 0, 1, 1), size = 1):

 self.scatter.setData(pos=points, color=color)

 def create_cube(self, width, height, depth, y_translation=0):
 # Define vertices with an added translation along the y-axis
 verts = np.array([
 [width / 2, height / 2 + y_translation, depth / 2],
 [width / 2, -height / 2 + y_translation, depth / 2],
 [-width / 2, -height / 2 + y_translation, depth / 2],
 [-width / 2, height / 2 + y_translation, depth / 2],
 [width / 2, height / 2 + y_translation, -depth / 2],
 [width / 2, -height / 2 + y_translation, -depth / 2],
 [-width / 2, -height / 2 + y_translation, -depth / 2],
 [-width / 2, height / 2 + y_translation, -depth / 2]
])

 # Define the edges of the cube, only outer edges, no diagonals
 edges = np.array([
 [0, 1], [1, 2], [2, 3], [3, 0], # Bottom
 [4, 5], [5, 6], [6, 7], [7, 4], # Top
 [0, 4], [1, 5], [2, 6], [3, 7], # Sides

InvisiFall 115

])

 # Create an empty list to store the line items
 cube_lines = []

 # Create a line plot item for each edge
 for edge in edges:
 start_vert = verts[edge[0]]
 end_vert = verts[edge[1]]
 line_data = np.array([start_vert, end_vert], dtype=np.float32)
 line_item = gl.GLLinePlotItem(pos=line_data, color=(1, 0, 0, 1),

width=2, antialias=True)
 cube_lines.append(line_item)

 return cube_lines
 def update_fall_indicator(self, fall_detected):
 self.fall_indicator.setText("FALL DETECTED" if fall_detected else

"Monitoring...")
 self.fall_indicator.setStyleSheet("QLabel { background-color: %s; font-

size: 18pt; }" % ('red' if fall_detected else 'green'))
 # Start/reset the timer when fall is detected
 # if fall_detected:
 # self.reset_timer.start(1000)

 def reset_fall_indicator(self):
 self.fall_indicator.setText("Monitoring...")
 self.fall_indicator.setStyleSheet("QLabel { background-color: green;

font-size: 18pt; }")

#------------------- UPDATE AND FALL DETECTION ---------------------------------

alarm_trigger = False
window = 20
current_window_idx = 0
all_data_frame = []
fall_df = pd.DataFrame(columns = ['detected_falls_idx'])

def control_com_on():
subprocess.run(["pwsh", "/home/boliclab/Desktop/lightON.ps1"])

def control_com_off():
subprocess.run(["pwsh", "/home/boliclab/Desktop/lightOFF.ps1"])

InvisiFall 116

def update():
 global s, recent_predictions, radar_gui, alarm_trigger, window,

current_window_idx, all_data_frame, fall_df
 dataOk, frameNumber, detObj = readAndParseData14xx(Dataport,

configParameters)

 if radar_gui.is_recording:

 if dataOk:
 # Convert detObj to DataFrame
 df = pd.DataFrame({
 'Frame Number': frameNumber,
 'X': -np.array(detObj["x"]),
 'Y': np.array(detObj["y"]),
 'Z': np.array(detObj["z"]),
 'velocity': np.array(detObj["doppler"]),
 })
 points = np.vstack((df['X'], df['Y'], df['Z'])).T
 radar_gui.scatter.setData(pos=points)

 if df.empty:
 pass
 else:
 current_window_idx +=1
 # print (df)
 all_data_frame.append(df)
 # Check every 20 frames = 1s
 print ('current_window_idx', current_window_idx)
 # os.system("Pause")
 if current_window_idx == 100:
 #Combine data frames together
 # print ('len(all_data_frame)', len(all_data_frame))
 # os.system("Pause")
 for i in range (len(all_data_frame)):
 if i == 0:
 current_data_frame = all_data_frame[0]
 else:
 current_data_frame = pd.concat([current_data_frame,

all_data_frame[i]], ignore_index= True)

 anomaly_data, centroidZ_his_anomaly =

data_processor.load_csv(current_data_frame, anomaly=True)
 centroidZ_his_anomaly_np = np.array(centroidZ_his_anomaly)
 # Sampling frequency

InvisiFall 117

 fs = 20 # 20 frames/second
 # Cutoff frequency (adjust based on your needs)
 cutoff = 4 # 5 Hz

 # Design Butterworth low-pass filter
 order = 5 # Filter order (adjust based on your needs)
 nyquist = 0.5 * fs
 normal_cutoff = cutoff / nyquist
 b, a = butter(order, normal_cutoff, btype='low', analog=False)

 # Apply the filter
 filtered_data = filtfilt(b, a, centroidZ_his_anomaly_np)

 model = autoencoder_mdl(model_dir='D:/1443Boost/')

 HVRAE_loss_history = model.HVRAE_predict(anomaly_data)

 flattened_loss_history = np.array([float(item) for sublist in

HVRAE_loss_history for item in np.atleast_1d(sublist)])

 # Interpolate HVRAE_loss_history to match the length of

centroidZ_his_anomaly
 time_steps_original = np.linspace(0, len(flattened_loss_history)-

1, len(flattened_loss_history))
 time_steps_target = np.linspace(0, len(flattened_loss_history)-1,

len(filtered_data))

 interpolated_loss_history = np.interp(time_steps_target,

time_steps_original, flattened_loss_history)

 calculator = compute_metric()

 threshold = 0.3 #23 #0.3
 detected_falls_idx, _ =

calculator.detect_falls(interpolated_loss_history, filtered_data, threshold)
 print(detected_falls_idx)

 fall_df['detected_falls_idx'] = detected_falls_idx
 falls_idx_csv_file_exist =

os.path.isfile('detected_falls_idx.csv')
 fall_df.to_csv('detected_falls_idx.csv', mode='a', header=not

falls_idx_csv_file_exist, index=False)

InvisiFall 118

 fall_df = pd.DataFrame()

 # Set alarm trigger
 if len(detected_falls_idx) != 0:
 alarm_trigger = True
 else:
 alarm_trigger = False

 current_window_idx = 0
 all_data_frame = []
 detected_falls_idx = []

 if alarm_trigger == True:
 print("FALL DETECTED")
 radar_gui.update_fall_indicator(True) # Indicator turns red

 else:
 if not radar_gui.reset_timer.isActive():
 radar_gui.update_fall_indicator(False)

 # Write to CSV
 df.to_csv(csv_file_path, mode='a', index=False, header=not

pd.io.common.file_exists(csv_file_path))

 points = np.vstack((df['X'], df['Y'], df['Z'])).T

 radar_gui.update_scatter_plot(points, size = 2)

 QtGui.QGuiApplication.processEvents()
 else:
 pass

Set up the serial connection and radar configuration parameters
CLIport, Dataport = serialConfig(configFileName)
configParameters = parseConfigFile(configFileName)

Initialize the Qt Application and RadarGUI
app = QtWidgets.QApplication([])
radar_gui = RadarGUI()
radar_gui.setWindowTitle('3D Radar Scatter Plot')

InvisiFall 119

radar_gui.show()

Connect the update function to a timer for periodic updates
timer = QtCore.QTimer()
timer.timeout.connect(update)
timer.start(33) # Update every 33 milliseconds

Start the Qt event loop
sys.exit(app.exec_())

InvisiFall 120

References

Jin, F., Sengupta, A., & Cao, S. (2022). mmFall: Fall Detection Using 4-D mmWave Radar and a

Hybrid Variational RNN AutoEncoder. IEEE Transactions on Automation Science and

Engineering, 19(2), 1245.

Rezaei, A., Mascheroni, A., Stevens, M. C., Argha, R., Papandrea, M., Puiatti, A., & Lovell, N. H.

(2023). Unobtrusive Human Fall Detection System Using mmWave Radar and Data

Driven Methods. IEEE Sensors Journal, 23(7), 7968.

Alhazmi, A. K., Alanazi, M. A., Alshehry, A. H., Alshahry, S. M., Jaszek, J., Djukic, C., ... &

Chodavarapu, V. P. (2024). Intelligent Millimeter-Wave System for Human Activity

Monitoring for Telemedicine. Sensors, 24(1), 268. https://doi.org/10.3390/s24010268

Qi, C. R., Su, H., Mo, K., & Guibas, L. J. (Year). PointNet: Deep learning on point sets for 3D

classification and segmentation. GitHub. Retrieved from

https://github.com/charlesq34/pointnet

Jin, F.; Zhang, R.; Sengupta, A.; Cao, S.; Hariri, S.; Agarwal, N.K.; Agarwal, S.K. Multiple

patients behavior detection in real-time using mmWave radar and deep CNNs. In

Proceedings of the 2019 IEEE Radar Conference (RadarConf), Boston, MA, USA, 22–26

April 2019; pp. 1–6

Sun, Y.; Hang, R.; Li, Z.; Jin, M.; Xu, K. Privacy-preserving fall detection with deep learning on

mmWave radar signal. In Proceedings of the 2019 IEEE Visual Communications and

Image Processing (VCIP), Sydney, NSW, Australia, 1–4 December 2019; pp. 1–4.

Bosch Sensortec. (n.d.). BMP581. Retrieved February 11, 2024, from https://www.bosch-

sensortec.com/products/environmental-sensors/pressure-sensors/bmp581/

Texas Instruments. (2024). IWR1443BOOST [Hardware]. Retrieved from

https://www.ti.com/tool/IWR1443BOOST?keyMatch=&tisearch=search-

everything&usecase=hardware

Texas Instruments. (2024). DCA1000EVM [Hardware]. Retrieved from

https://www.ti.com/tool/DCA1000EVM?keyMatch=&tisearch=search-

everything&usecase=hardware#order-start-development

Amazon. (n.d.). Spigen Certified Dynamic Holder for PlayStation [Product]. Retrieved from

https://www.amazon.ca/Spigen-Certified-Dynamic-Compatible-

Playstation/dp/B08PSF95M2/ref=asc_df_B08PSF95M2&mcid=f01f9979152937f985a73

bdf49c27e78?tag=bingshopdesk-

20&linkCode=df0&hvadid=80745476895979&hvnetw=o&hvqmt=e&hvbmt=be&hvdev

=c&hvlocint=&hvlocphy=&hvtargid=pla-4584345030713692&psc=1

PiShop. (2024). Raspberry Pi 5 8GB [Product]. Retrieved from

https://www.pishop.ca/product/raspberry-pi-5-8gb/?src=raspberrypi

https://doi.org/10.3390/s24010268
https://github.com/charlesq34/pointnet
https://www.bosch-sensortec.com/products/environmental-sensors/pressure-sensors/bmp581/
https://www.bosch-sensortec.com/products/environmental-sensors/pressure-sensors/bmp581/
https://www.ti.com/tool/IWR1443BOOST?keyMatch=&tisearch=search-everything&usecase=hardware
https://www.ti.com/tool/IWR1443BOOST?keyMatch=&tisearch=search-everything&usecase=hardware
https://www.ti.com/tool/DCA1000EVM?keyMatch=&tisearch=search-everything&usecase=hardware#order-start-development
https://www.ti.com/tool/DCA1000EVM?keyMatch=&tisearch=search-everything&usecase=hardware#order-start-development
https://www.amazon.ca/Spigen-Certified-Dynamic-Compatible-Playstation/dp/B08PSF95M2/ref=asc_df_B08PSF95M2&mcid=f01f9979152937f985a73bdf49c27e78?tag=bingshopdesk-20&linkCode=df0&hvadid=80745476895979&hvnetw=o&hvqmt=e&hvbmt=be&hvdev=c&hvlocint=&hvlocphy=&hvtargid=pla-4584345030713692&psc=1
https://www.amazon.ca/Spigen-Certified-Dynamic-Compatible-Playstation/dp/B08PSF95M2/ref=asc_df_B08PSF95M2&mcid=f01f9979152937f985a73bdf49c27e78?tag=bingshopdesk-20&linkCode=df0&hvadid=80745476895979&hvnetw=o&hvqmt=e&hvbmt=be&hvdev=c&hvlocint=&hvlocphy=&hvtargid=pla-4584345030713692&psc=1
https://www.amazon.ca/Spigen-Certified-Dynamic-Compatible-Playstation/dp/B08PSF95M2/ref=asc_df_B08PSF95M2&mcid=f01f9979152937f985a73bdf49c27e78?tag=bingshopdesk-20&linkCode=df0&hvadid=80745476895979&hvnetw=o&hvqmt=e&hvbmt=be&hvdev=c&hvlocint=&hvlocphy=&hvtargid=pla-4584345030713692&psc=1
https://www.amazon.ca/Spigen-Certified-Dynamic-Compatible-Playstation/dp/B08PSF95M2/ref=asc_df_B08PSF95M2&mcid=f01f9979152937f985a73bdf49c27e78?tag=bingshopdesk-20&linkCode=df0&hvadid=80745476895979&hvnetw=o&hvqmt=e&hvbmt=be&hvdev=c&hvlocint=&hvlocphy=&hvtargid=pla-4584345030713692&psc=1
https://www.amazon.ca/Spigen-Certified-Dynamic-Compatible-Playstation/dp/B08PSF95M2/ref=asc_df_B08PSF95M2&mcid=f01f9979152937f985a73bdf49c27e78?tag=bingshopdesk-20&linkCode=df0&hvadid=80745476895979&hvnetw=o&hvqmt=e&hvbmt=be&hvdev=c&hvlocint=&hvlocphy=&hvtargid=pla-4584345030713692&psc=1
https://www.pishop.ca/product/raspberry-pi-5-8gb/?src=raspberrypi

InvisiFall 121

Best Buy. (2024). Best Buy Essentials 7.63m (25ft) Cat6 Ethernet Cable [Product]. Retrieved from

https://www.bestbuy.ca/en-ca/product/best-buy-essentials-7-63m-25ft-cat6-ethernet-

cable-be-pec6st25-c/15101526

Grainger Canada. (2024). GGE1EJH4 [Product]. Retrieved from

https://www.grainger.ca/en/product/p/GGE1EJH4?s_kwcid=AL!3645!10!766224055783

87!76622297852485&gucid=N:N:PS:Paid:MS:CSM-

8512:NSEMX7:20501231:APZ_1&gclid=0c05ee7d71f51687b44d8bb6fa947f83&gclsrc

=3p.ds&msclkid=0c05ee7d71f51687b44d8bb6fa947f83

https://www.bestbuy.ca/en-ca/product/best-buy-essentials-7-63m-25ft-cat6-ethernet-cable-be-pec6st25-c/15101526
https://www.bestbuy.ca/en-ca/product/best-buy-essentials-7-63m-25ft-cat6-ethernet-cable-be-pec6st25-c/15101526
https://www.grainger.ca/en/product/p/GGE1EJH4?s_kwcid=AL!3645!10!76622405578387!76622297852485&gucid=N:N:PS:Paid:MS:CSM-8512:NSEMX7:20501231:APZ_1&gclid=0c05ee7d71f51687b44d8bb6fa947f83&gclsrc=3p.ds&msclkid=0c05ee7d71f51687b44d8bb6fa947f83
https://www.grainger.ca/en/product/p/GGE1EJH4?s_kwcid=AL!3645!10!76622405578387!76622297852485&gucid=N:N:PS:Paid:MS:CSM-8512:NSEMX7:20501231:APZ_1&gclid=0c05ee7d71f51687b44d8bb6fa947f83&gclsrc=3p.ds&msclkid=0c05ee7d71f51687b44d8bb6fa947f83
https://www.grainger.ca/en/product/p/GGE1EJH4?s_kwcid=AL!3645!10!76622405578387!76622297852485&gucid=N:N:PS:Paid:MS:CSM-8512:NSEMX7:20501231:APZ_1&gclid=0c05ee7d71f51687b44d8bb6fa947f83&gclsrc=3p.ds&msclkid=0c05ee7d71f51687b44d8bb6fa947f83
https://www.grainger.ca/en/product/p/GGE1EJH4?s_kwcid=AL!3645!10!76622405578387!76622297852485&gucid=N:N:PS:Paid:MS:CSM-8512:NSEMX7:20501231:APZ_1&gclid=0c05ee7d71f51687b44d8bb6fa947f83&gclsrc=3p.ds&msclkid=0c05ee7d71f51687b44d8bb6fa947f83

	Acknowledgments
	Abstract
	Introduction
	Problem Definition:
	Problem Statement:
	Project Overview:
	Scope and Objectives:
	Notification System Testing:
	Expected Outcomes:
	Benchmarking:
	Comparison of Existing Solutions

	Metrics and Units:
	Linking metrics to needs:
	Assign Marginal and Ideal Values

	Concept Generation and Analysis
	Overall Concept
	Sensing Hardware Concept Generation
	Concept 1: IWR 1443 BOOST FMCW Radar (Texas Instrument):
	Concept 2: Depth Camera & Radar:
	Concept 3: BMP 581 pressure Sensor
	Concept 4: Accelerometer
	Concept 5: Sensing floor
	Concept Analyses:
	Supporting calculation

	Data Processing Concept Generation:
	Notification System Concept Generation:
	Concept Design:
	Concept’s Benefits and Drawbacks
	Client Feedback:

	Detailed Design and First Prototype
	Minimum Viable Product Architecture
	UART Communication protocol with the IWR1443BOOST
	PointNet Neural Networks
	Twilio Notification System
	Event Detection:
	Notification Generation:
	Sending Notifications:
	Status Update:
	Output:

	Following The MVP Presentation

	Second Prototyping and Testing
	Fall Detection using PointNet Neural Networks
	1st Iteration: PointNet Neural Networks
	2nd Iteration: Updated PointNet with Resampler for Data Preprocessing:
	GUI for Fall Detection System

	Notification system update
	Critical product assumptions
	Arduino uno and normal Relay
	USB Relay
	USB relay operation process

	Final Prototype
	Following Beta Presentation
	Final Machine Learning Model: Hybrid Variational RNN AutoEncoder
	Variational Autoencoder (VAE):
	Integrating a Recurrent Neural Network to the VAE:
	Data Processing and data flow:
	Fall Detection logic and Results:

	Updated GUI for Fall Detection
	Discussion:

	Conclusion
	Future Work
	Appendix
	Appendix A
	Appendix B:
	Appendix C:
	Appendix D:

	References

