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Simulated Dataset for the Loaded vs. Unloaded UAV Classification
Problem Using Deep Learning
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Abstract— Detecting payloads on Uncrewed (or Unmanned)
Aerial Vehicles (UAVs) is crucial for safety and security reasons.
Deep learning methods can utilize changes in UAV appearance
caused by payloads for detection, but collecting sufficient
training data through real tests is costly and time-consuming.
Therefore, simulation can be a more practical option. This
paper presents the first synthetic air-to-air vision dataset for
classifying loaded vs. unloaded UAVs. The dataset includes five
types of aerial vehicles with attached and hanging payloads of
different colors. It also incorporates three environmental con-
ditions (sunny, rainy, and snowy) to diversify the background
in recorded videos. Annotated frames and XYZ coordinates of
the camera and drone are provided. To validate the dataset,
a ResNet-34 network is trained with synthetic data and tested
on real UAV flight data. The classification results on the test
dataset confirm the effectiveness of the synthetic dataset for
payload detection. The synthetic dataset and classification codes
are publicly available on GitHub (https://github.com/
CARG-uOttawa/loaded-unloaded-drone-dataset).

Keywords - Drone, Uncrewed Aerial Vehicle, Un-
manned Aerial Vehicle (UAV), Remotely Piloted Aircraft
Systems (RPAS), UAV Payload, Counter UAYV, Machine

Learning, dataset

I. INTRODUCTION

Uncrewed or Unmanned Aerial Vehicles (UAVs), also
known as drones and Remotely Piloted Aircraft Systems
(RPAS), have attracted considerable attention recently. The
U.S. Federal Aviation Administration (FAA) released its first
approval of UAVs to be integrated into the nation’s airspace
in November 2013 [1]. Due to FAA Aerospace Forecast
2022-2042 [2], the number of registered UAVs with FAA
by December 2020 was about 1.37 million (with an average
of 10,300 per month during 2021). In Canada, this number
was over 72,000 by December 2022, according to Transport
Canada. Utilizing drones has grown dramatically in various
commercial applications and governmental missions such as
precision agriculture, cargo transport, search and rescue [3].
For a recent review of UAV technologies and applications,
the reader is referred to [4]. However, the extensive usage
of UAVs raises serious concerns about safety and security
issues. The threats, such as transporting smuggled goods
and other illegal substances, are among many concerns about
UAVs. Thus, the classification problem between loaded and
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unloaded drones has received considerable attention in recent
years.

A. Related works

Various sensors have been used for drone detection ap-
plications, including radar, Electoro-Optical (EO) sensors,
and acoustic ones. The same sensors can generally be used
for classification between loaded and unloaded drones. Many
existing methods in the literature are based on classification
approaches, using recorded radar data from drones. A major-
ity of those considered the micro-Doppler signature from the
UAV and extracted some discriminating features to classify
between loaded and unloaded drones [5]-[11]. For example,
in [12], [13], the authors calculated the short-time Fourier
transform (STFT) of the radar signals in the collected dataset
in the University College London (UCL) to analyze micro-
Doppler signature of the micro-drone for different payloads.
Then, they applied several classifiers on the features extracted
from STFT to classify between loaded and unloaded drones.
Among all references, only one paper has utilized acoustic
data for loaded drone classification [3]. The study focused
on the problem of remote detection of payload weight using
the drone’s acoustic fingerprint. It was shown that different
weights cause changes in the speed of motors and thus
the acoustic fingerprint. By using Mel-Frequency Cepstral
Coefficients (MFCC) and SVM classifiers, they achieved a
classification accuracy of around 98% for detecting specific
payload classes carried by the drone.

The rapid progress in the field of computer vision and
advances in deep learning algorithms make optical sensing
one of the most attractive methods for drone detection and
classification. By using cameras with different fields of view
(FOV), with wide field coverage and narrow FOV for higher
resolution and improved identification performance, various
visual (image or video) data analysis methods have been
proposed for drone detection/classification problems. Among
all the references which have used the vision camera for
drone classification, there are only a few that consider the
payload detection problem.

Seidaliyeva et al. [14] proposed a deep learning approach
to the two-class drone classification problem (loaded vs.
unloaded). In this reference, the authors collected their data
using a DJI Phantom 2 and captured some videos from it
in both loaded and unloaded cases. In addition, because of
the shortage in the number of recorded frames, some photos
from drone delivery services such as Amazon and DHL were
taken from some public open sources. Unfortunately, there
is no specific information about the type of payloads used
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in the test and the dataset is not publicly available. The
authors utilized a deep residual convolutional neural network
(ResNet-34) for the binary classification problem between
loaded and unloaded drones. The same authors proposed an-
other solution based on YOLOvV2 (You Only Look Once) for
the two-class drone detection problem (loaded vs. unloaded)
[15]. Both papers show acceptable results in the considered
classification problem.

B. Simulated Dataset Generation

The vision camera is a commonly used sensor for drone
detection and classification [16]. Deep learning (DL) meth-
ods have shown promising performance in various domains,
but collecting and annotating a large amount of data for
training remains a challenge. There is a scarcity of publicly
available optical datasets for detecting payloads on UAVs.
To address this, simulated datasets can be beneficial for
quick investigations, with real data augmentation later in the
training process. Simulations offer control over environmen-
tal conditions, unlike practical tests affected by factors like
weather. AirSim®, an open-source simulation tool developed
by Microsoft, enables the simulation of drones and cars in
diverse environments.

AirSim® is based on Unreal Engine and provides an
API for easy control of vehicles and data collection from
sensors, including vision cameras [17]. Its object detection”
feature allows generating bounding boxes around desired
objects in recorded videos. The simulated environment can
be customized, offering control over weather and lighting
conditions. These features facilitate the creation of com-
prehensive vision datasets for DL classification algorithms.
By default, AirSim® provides a simple quadrotor model,
limiting the dataset’s diversity. However, it is possible to
import custom drone models, although the process is not
straightforward.

Contributions: To the best of authors’ knowledge, this
work is one of the few that applies computer vision and DL
to the problem of payload detection on UAV platforms. To
address the lack of an available dataset for loaded versus
unloaded drone classification based on vision data, we have
created the first publicly-available annotated air-to-air vision
dataset. The dataset includes five diverse drone models in
loaded and unloaded scenarios, captured in various environ-
ments and weather conditions. The recorded videos provide
comprehensive training and evaluation data, with annotations
and XYZ coordinates available for each frame. This dataset
not only fills the data gap but also encourages the inclusion
of other drone types in future research. However, this work
and the prepared dataset focus on optical detection based on
appearance features, excluding the kinematic and dynamic
effects of the payload on UAV motion. The frame-by-frame
classification problem relies on changes in the UAV’s shape
due to added payload, without extracting kinematic features
from the videos. In addition to dataset preparation, we
define various classification problems on the recorded dataset
and train/test ResNet-34 (Residual Network with 34 layers)
[18] to solve them (codes available via the provided link).

(a) Body object (b) Propeller object

Fig. 1: Prepared 3D objects to be imported into AirSim®

The classifier, trained on a portion of the synthetic dataset,
is also applied to real-world test data from UAV flights.
The favorable performance on unseen data demonstrates the
richness and diversity of the prepared dataset.

The rest of the paper is organized as follows. The pro-
cedure for preparing the simulated dataset is explained in
the next section, and some information about the collected
dataset will be given. In section III, a brief explanation of
the deep network that is utilized to solve the classification
problem is presented. Then, in section IV, some samples of
the recorded dataset, as well as the results of applying the
DL-based method, will be given. Also, the results of both
simulated and practical data are presented in this section.
Finally, the conclusion will be given.

II. SIMULATED DATASET USING AIRSIM

As was explained in the introduction, there are no public
vision datasets for the loaded vs. unloaded drone classifica-
tion problem. AirSim® provides a platform for simulating
flying drones in different environments. There is only one
simple quadcopter available as the default model that can be
utilized in the simulations. However, as an open-source tool,
it is possible to import other drone models into AirSim®
(although it is not straightforward work). In this paper,
various models of drones in both loaded and unloaded
forms have been imported to this environment in order to
accomplish some flying scenarios and collect the required
data. In this section, the procedure of creating the simulated
air-to-air dataset, including the process of importing new
drone models into AirSim®, will be explained. Besides, some
statistics about the simulated dataset and an explanation of
uploaded files on GitHub will be presented.

A. Procedure of importing a custom drone model into AirSim

To import a specific UAV model into AirSim®, the 3D
model needs to undergo some preparation. Since most 3D
models of drones consist of multiple components, only the
body and one propeller need to be extracted from the original
3D model using 3D design tools like Autodesk Maya [19].
These components should be combined into a single object,
and the resulting 3D models should be exported as fbx files
for use in AirSim simulations. For example, Fig. 1 shows
the two prepared 3D objects (body and propeller) for the
DJI Phantom drone.

After importing these fbx files into AirSim®, the drone
model can be constructed by duplicating the default drone
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(a) Prespective view

(b) Top view

Fig. 2: Adding the last propeller to the new drone model in
AirSim®

(a) DJI Phantom (b) DJI Inspire  (c) DJI Mavic

=

(d) DII FPV  (f) Quadrotor

Fig. 3: Different drone models simulated in the dataset

model and replacing the body and propeller parts with
the imported objects. In the blueprint editing window, the
prepared objects can be used to replace the corresponding
parts of the drone model. Fig. 2 shows adding the last
propeller to the new drone model in AirSim® (the blue 3D
parts are just some AirSim® internal shapes to show the
sensors mounted on the drone). It should be noted that the
propellers are not static for the drone simulated using the
above procedure. All the propellers would be controlled and
rotated during hovering or flying scenarios.

Based on the explained procedure, 5 types of drones have
been imported into AirSim® in our dataset (Fig. 3) including
4 DJI models [20] and also, a generic drone model. From
this point on, this model is called Quadrotor in the paper,
and its width with widely spread propellers is assumed to be
around 70 cm. These drones are selected based on their size
category. In other words, DJI Phantom and Quadrotor can
be considered as two models in the large-size category. DJI
Inspire is a sample of the mid-size drones and, DJI Mavic
and FPV models can be categorized in the small-size group.

B. Payload simulation

To enhance dataset diversity, various forms of payloads
were simulated and incorporated into the drone models,
including box-shaped payloads in two colors (black and
orange) attached to the drones, as well as hanging payloads.
Importing loaded drones followed a similar procedure to
that of importing the drone itself. However, the payload
was drawn separately using the Curves/Surfaces option in
Autodesk Maya and then merged with the body object to
create a complete 3D model of the loaded drone. Fig. 4
showcases examples of simulated loaded drones featuring
different payload forms and colors.

C. Simulated Environments

To utilize imported drones in AirSim®, it is necessary to
create custom environments as the pre-built binary files on

(a) Attached box payload (b) Hanging payload

Fig. 4: Two forms of loaded drones in the simulated dataset

Fig. 5: Different environments used in the simulated dataset

the AirSim® website are incompatible. In our dataset, we
have chosen three environments: a simple Blocks environ-
ment, Landscape Mountains, and City Park Environment-
Lite [21]. The Blocks environment represents the simplest
case with a primarily sky background, except when the drone
is near the blocks. The Landscape Mountains environment
provides a natural setting with trees, rocks, and a lake in the
background. Lastly, the City Park environment offers a blend
of natural elements, such as trees, along with man-made
objects like buildings. By simulating various backgrounds
in the dataset, we account for their potential impact on the
performance of vision-based classifiers. A sample scene of
all these environments can be seen in Fig. 5.

D. Statistics about the simulated dataset

Considering the approach described above, the specifica-
tion of the simulated dataset will be explained in this part.
In practical situations, various types of drones may be used
to carry the desired payload. Thus, in the published dataset,
five types of drones, including 4 DJI models and the generic
Quadrotor model, have been imported into AirSim® environ-
ment. Considering other simulation conditions explained in
the previous parts, a brief explanation of dataset specification
can be seen in Table I. In each case, a video of around
1000 frames with a resolution of 1920x1280 pixels and a
field of view (FOV) of 82 degrees has been recorded, and
the annotation file (using the “object detection” feature of
AirSim®) has been provided. Fig. 6 shows an example of
the shape of Quadrotor in both loaded and unloaded cases.

As mentioned in the previous sections, air-to-air video
recording of the observed drone helps to have various view
angles of it (compared to the case when the camera is on the
ground and there is only a bottom view angle of the drone).
To illustrate this advantage, Fig. 7 shows the captured image
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TABLE I: Dataset explanation

Types of drones DJI Phantom, DJI Inspire, DJI Mavic,

DIJI FPV, Quadrotor

Simple block Env., Mountain landscape

City park

Sunny, Rainy, Snowy

Unloaded, Attached load (box), Hanging load

Environment

Weather condition
Payload condition
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Fig. 6: An example of the shape of Quadrotor in the collected
dataset for the loaded and unloaded cases (all the images are
resized to 255 X 255 pixels)

of two types of drones for various height differences between
the camera and the observed drone.

The effect of weather on the recorded videos for sunny,
rainy, and snowy weather can be seen in Fig. 8. It can be
observed that in rainy and snowy weather, it is probable that
the drops fall in front of the camera and cover some parts
of the recorded scene, including the drone.

Fig. 9 shows the distribution of the collected dataset for
DIJI Phantom and DJI FPV as samples of two different size
classes (for six scenarios and a total of around 6000 frames,
including loaded and unloaded drones in various weather
conditions in one of the environments). In both subfigures,

¢ f|.| “' . %
(a) Quadrotor
(b) DJI Mavic

Fig. 7: Captured image of two types of drones for various
height differences between the camera and the observed
drone (left: up view, middle: same height, right: bottom view)

(a) Sunny (b) Rainy (c) Snowy

Fig. 8: The effect of weather condition on the captured
images
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(a) DJI Phantom

(b) DJI FPV

Fig. 9: Distribution of the collected dataset including the
number of training images (top-left), Normalized bounding
box shape for various frames (top-right), and scatter plots of
objects’ locations (bottom-left) in the frames and their sizes
(bottom-right)

the top-left plot shows the histogram of the loaded and
unloaded classes in the collected dataset. As can be seen,
for both drones (and also, for other drones in the dataset),
we have a uniform distribution for the number of samples
for each class. The bottom-left figure shows the scatter plot
of the location of the drone in the normalized frame region.
This plot shows the drone is placed almost in all parts of this
region. The top-right subfigure shows the normalized ground-
truth bounding box width and height for various frames. This
information shows the size of the drone in the dataset. In
this figure, the normalized bounding boxes, with respect to
the size of the image frame (10801920 pixels) for all the
frames, are plotted. In addition, the size of both drones can be
compared, and as it can be seen, on average, DJI Phantom has
a bigger size than DJI FPV. Finally, the bottom-right subplot
shows the scatter plot of the size of the bounding box and
the size of the drone along the vertical and horizontal axis.

III. CLASSIFICATION METHOD

Although various forms of classifiers can be applied to the
prepared dataset, the ResNet-34 [18] architecture is selected
in this paper. The reason of selecting this architecture is
that it showed acceptable performance in the same problem
in [15]. ResNet-34 is a 34-layer deep convolutional neural
network in the category of residual networks. To address
the gradient vanishing problem as one of the challenges
in the training phase of the network, ResNet structure was
proposed. The building block of such networks consists of
a connection between the output of one layer to the input
of an earlier one. The structure of the residual block can be
seen in Fig. 10. The basic structure of ResNet-34 is inspired
by the famous VGG nets [22]. It consists of several layers
with a kernel size of 3 by 3. In more details, it is composed
of a total of 34 layers, which includes one convolutional
and pooling layer, along with four other layers following
the same pattern. Each layer utilizes a 3 x 3 convolution
operation with feature map sizes of 64, 128, 256, and 512,
respectively. There are also batch normalization step with the
above identity connections, and also a fully-connected (fc)
layer with softmax as the last layer. Since there are only two
classes here, the last fc layer has changed to the case with two
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Fig. 10: A building block of residual network

outputs (probability of each class, i.e., loaded and unloaded
drone). For a detailed description of the architecture, the
reader is referred to [18].

IV. SIMULATION RESULTS

Due to the vast simulation conditions considered in the
collected dataset (including the drone type, as well as pay-
load and environmental conditions), various problems can be
defined. Based on the portion of the dataset one considers
for the problem and the training and testing phases, some of
the suggested problems are:

o Loaded-vs-unloaded drone binary classification just for

a single type of drone (the simplest case) in just
one environmental condition or in the case of various
environment/weather condition

o Loaded-vs-unloaded drone classification for the general

case of several drone models in the dataset

o Classification among various payload forms for the

single and/or multiple types of drones (unloaded vs.
payloadattached Vs. payloadhanging)

This paper has considered and solved some of these
problems using the deep network structure explained in the
previous section. The hyperparameters of ResNet-34 have
been set based on the values reported in [15]. The number
of epochs and batch size are defined to be 25 and 64,
respectively. Also, the value of the learning rate has been
set to 0.03. Finally, the Stochastic Gradient Descent (SGD)
optimizer has been used due to the better results reported
using it compared to other optimizers. Using these settings,
the results of classification for some of the defined problems
in the previous part are given in Table II. For each problem,
the data is divided into training, validation, and testing sets,
with proportions of 70%, 15%, and 15%, respectively. To
determine the number of frames in each row, as previously
mentioned, approximately 1000 frames are simulated under
each specific condition. For instance, in the second row
of the table, there are a total of 6000 frames (3 weather
conditions x 2 classes x 1000 frames per condition). These
frames are further allocated as follows: 4200 frames for
training, 900 frames for validation, and 900 frames for
testing. Similar to previous works on the loaded vs. unloaded
drone classification using vision data [14], [15], ResNet-
34 shows highly accurate results on the binary loaded vs.
unloaded drone classification problem.

Finally, it can be observed from this table that, as we
expected, better classification results are achieved for the
simpler cases. The classification accuracy decreases with an
increase in the complexity of the background and environ-
ment (compare rows 3 and 4), weather conditions (compare
rows 1 and 2, or 6 and 7), or a decrease in the size of the
observed drone (compare rows 2 and 9).

TABLE II: Classification results using ResNet-34

Case Acc.
1 Quadrotor, Blocks env., Sunny (Payload with orange | 1
color)
2 Quadrotor, Blocks env., All weather (Payload with | 0.9980
orange color)
3 Quadrotor, Blocks env., Sunny 1
4 Quadrotor, City park env., Sunny 0.9916
5 Quadrotor, Blocks & City park env., Sunny 0.9941
6 DJIMavic, Blocks env., Sunny 1
7 DJIMavic, Blocks env., All weather 0.9883
8 DJIMavic, Blocks & City park env., Sunny 0.9609
9 DIJIFPV, Blocks env., All weather 0.9644

A. Results on practical data

In addition to the simulation results, we also applied
the ResNet-34 network, trained on simulated data, to some
recorded practical data. Our practical data was captured
using a quadrotor flying at various distances (from 20 to
around 100 meters) from the camera (see Fig. 11). To have
a loaded drone, a box-shaped payload (with dimensions of
7.8 x 9 x 15¢m3) was attached underneath the drone. To
test the classifier’s performance in this study, around 1,800
frames of the recorded videos were selected for each loaded
and unloaded case. The drone occupied an average of 20
pixels in width in the selected frames (the camera resolution
was 1080 x 1920 pixels). It should be noted that the camera
was mounted on a chasing drone, and thus we encountered an
air-to-air test case. We achieved an accuracy of around 98%
and 97% for classifying the unloaded and loaded drones,
respectively. These results demonstrate the effectiveness of
our simulated dataset for training the classifier network. The
recorded practical data will be published soon.

V. CONCLUSION

This research introduced the first synthetic dataset specif-
ically designed for the loaded versus unloaded classification
of drones. By incorporating diverse types of drones, envi-
ronments, payloads, and weather conditions, the collected
dataset exhibits the necessary variation required for effective
network training. Moreover, the proposed approach utilized
the ResNet-34 deep network to address several classification
problems within the dataset. The trained network, using the
synthetic data, demonstrated promising results in accurately
classifying loaded and unloaded drones within real-world
scenarios.

The development of this synthetic dataset and the subse-
quent successful classification using deep learning techniques
pave the way for future research in counter-drone systems.
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(a) Unloaded

(b) Loaded

Fig. 11: A sample frame of the practical recorded video from
unloaded and loaded drones, and the zoom of the detected
drone

It opens up possibilities for further exploration of detection
and classification algorithms, as well as the integration of
real-world data to validate the effectiveness of the trained
network. Initial results of practical data validate the proposed
approach. However, as future work, importing more drone
types and payload shapes can enhance dataset richness for
research and practical applications.
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