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Abstract— This paper introduces a novel approach to es-
timating the distance between a drone and a camera using
deep learning techniques. The proposed method employs a
low-complexity convolutional neural network (CNN), called
DroneRanger, to analyze the captured 2D image and estimate
the distance between the observer and target drones. Three
types of input data for the CNN regression model are investi-
gated, including extended bounding box, resized bounding box,
and resized bounding box with additional size information. The
effectiveness of the method is demonstrated through experi-
ments conducted on both synthetic datasets built using AirSim©

as well as real flight tests, showcasing its performance across
various simulation conditions, including different weather and
environments. Furthermore, experiments conducted on real-
world data captured using camera-equipped drones validate the
method’s performance under practical conditions. To address
uncertainties in training labels caused by imperfect localization
information from GPS sensors, robust regression based on
the Huber loss function is employed to improve accuracy
(improvement of around 2 meters in RMSE compared to the
MSE loss). These findings suggest promising prospects for
accurately estimating 3D distances from 2D images (with RMSE
of distance estimation error less than 5 meters and R2 values
of above 0.9 for the regression task), highlighting the potential
of the proposed approach for real-world problems in drone
applications such as collision avoidance between drones.

I. INTRODUCTION

Uncrewed or Unmanned Aerial Vehicles (UAVs) or drones
have gained significant attention and widespread use in
various sectors, such as agriculture, surveillance, and trans-
portation [1]–[4]. However, the surge in drone deployment
has raised concerns about safety and security, leading to
an increasing focus on counter-UAV measures including
localization.

Localization in drone navigation refers to establishing the
exact position of the drone within its environment, a form
of information that is essential for autonomous navigation.
Vision-based localization methods rely on visual information,
like images or videos from onboard or external cameras,
to determine the drone’s position accurately. The inherent
loss of depth information in 2D representations, compounded
by factors like perspective distortion and lighting variations,
contributes to the difficulty of distance estimation using
vision data. These challenges necessitates innovative Deep

1H. Azad and M. Bolic are with the School of Electrical
Engineering and Computer Science (SEECS), University of Ot-
tawa, 800 King Edward, Ottawa, On., Canada {hamid.azad,
miodrag.bolic}@uottawa.ca

2V. Mehta and I. Mantegh are with the National Research Coun-
cil Canada (NRC), Montreal, QC., Canada {varunkumar.mehta,
iraj.mantegh}@cnrc-nrc.gc.ca

Learning (DL)-based approaches for accurate distance es-
timation in drone localization. This paper investigates the
application of the DL-based method in the problem of drone
distance estimation using vision data. Accurate drone local-
ization including distance estimation is essential for enabling
autonomous navigation and self-guided flight, obstacle avoid-
ance, and efficient mission planning. Additionally, having
such information about any intruder drone allows for the
assessment of necessary defensive actions depending on its
closeness to the restricted zone. This allows for informed
decisions regarding the necessary response level, and thus,
improves the overall situational awareness.

A. Literature review

A limited number of works have employed vision cameras
for the sake of UAV distance estimation. The authors in
[5] addressed the development of a deep learning-based
method for estimating distances to avoid mid-air collisions
in UAVs. This method relied solely on a monocular camera
to detect an approaching intruder drone (fixed-wing type)
and estimate its distance. To estimate the distance of the
detected drone, two distinct DL approaches, CNN and DNN
(Convolutional/Deep Neural Network [6]), were employed.
The CNN approach, chosen for its robustness, comprised a
5-layer VGG16-based network, followed by a 4-layer deep
one. To evaluate the performance of the proposed networks,
a synthetic dataset was generated using Blender. A notable
drawback of this study lies in the utilization of a complex
network for distance estimation which results in a high
computational burden. In the work by Patel et al. [7], they
introduced a hybrid framework for drone detection and dis-
tance estimation. This approach employed a linear regression
network to estimate the distance, utilizing inputs such as
bounding box coordinates, embedded features from the pre-
step object detection network, and the mean RGB value
of pixels within the bounding box. The authors of [8], [9]
introduced an optical spatial localization system for UAVs,
relying on a single camera. This system involved a blinking
LED ring affixed to the UAV as a marker, alongside an event-
based dynamic vision sensing camera and the developed 3D
localization algorithm which was implemented on a base
station. The algorithm could determine the location of the
UAV by using the known physical parameters of the marker
after detecting the blinking LED marker with the event-based
camera. However, a notable limitation of this approach is its
reliance on specific hardware installations like LEDs, making
it impractical for scenarios involving non-owned drones.

Considering the constraints highlighted in the preceding
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lines, such as the elevated computational burden or the need
for additional hardware in existing algorithms, we introduce
a novel shallow regression network. Our network comprises
four convolutional layers, each containing 32 or fewer fil-
ters, facilitating low-level complex processing for distance
estimation. The network takes input from the cropped image
area within the bounding box, readily obtained from the
output of the drone detection step. We have explored the
impact of three types of inputs and have also introduced a
robust regression method employing Huber loss to handle
uncertain labels. The proposed network has demonstrated
satisfactory performance in estimating the 3D distance of
detected drones, using captured 2D images, both in synthetic
and real-world scenarios.

The rest of the paper is organized as follows. The next
section details the motivation of this work including problem
definition. Section III provides an overview of the proposed
solution for drone distance estimation using vision data based
on a deep regression network. The simulation results as well
as results from practical tests are presented in section IV.
The paper concludes with a summary of the findings.

II. PROBLEM DEFINITION

The counter-UAV system in Fig. 1 is a multi-sensor one
that includes a ground-mounted radar and Pan-Tilt-Zoom
(PTZ) camera, which can be considered as early warning
sensors to detect the intruder drones. However, these sensors
have limitations in flexibility and coverage area for long dis-
tances, potentially hindering their effectiveness in addressing
threats from target drones. To address this, an alternative
approach is equipping an observer drone with a counter-UAV
sensor to expand the defense coverage, and thus, enhance
the effectiveness of the whole system. Given the constraints
on payload (both size and weight) and power availability,
mounting multiple sensors becomes quite challenging. There-
fore, utilizing a vision camera emerges as a feasible solution
due to its affordability, low power consumption, and potential
for compact implementation. Therefore, as shown in Fig. 1,
the vision camera serves as the primary and sole sensor on
the observer drone for counter-UAV purposes. The images
and videos captured by this sensor are crucial for identifying
and neutralizing target drones by extracting vital information
such as their location. After detecting an unknown drone us-
ing the radar and PTZ camera, the observer drone approaches
it for closer inspection. The output of the onboard camera
is continuously processed using object detection algorithms
[11]–[13], likely YOLO-v5 [14]–[17] or its combination
with Simple Online and Realtime Tracking (SORT) with
a deep association metric (DeepSORT) tracker [18], [19],
providing crucial data for analysis. These algorithms result
in essential outputs such as the bounding box’s position and
size (in pixels), detection timestamp, and confidence level in
identifying a drone. The extracted bounding box data enables
the cropping of the region of interest from the image frame
for subsequent processing. The distance estimation algorithm
(here, DroneRanger) is then applied to the detected drone.
The problem here is determining the distance in 3D space

Fig. 1: Block diagram of the multi-sensor counter-UAV sys-
tem (Blue blocks: deployed sensors, Green block: the drone
detection block, the output of which is used in this study, Red
block: proposed method for distance estimation (azimuth and
elevation angles can be estimated using algorithms such as
the one in [10]).

between the observing and target drones based on the 2D
frames captured by the drone’s camera. In the next section,
the proposed method based on the deep regression network
will be presented.

III. PROPOSED METHOD (DRONERANGER)

Following drone detection in the captured image or video
using tools like YOLO, the information about the resulting
bounding box around the identified drone is forwarded to
post-processing algorithms for tasks like drone distance esti-
mation. This bounding box holds key information about the
drone’s size, position within the image, and its represented
area. Utilizing this bounding box data is crucial for accu-
rately estimating the 3D location of the target drone relative
to the assumed reference coordinate frame on the camera
(observer drone). To estimate the azimuth and elevation
angles, acceptable results can be obtained by utilizing the
bounding box position in the frame and assuming the simple
pinhole model, as discussed in [10]. This study considers the
estimation of the distance between the camera and the target
drone based on the captured 2D images.

We employ regression with the developed CNN to estimate
the distance from cropped images obtained via the object de-
tector network (here, YOLO-v5 [14]). Training the regression
network on data with ground truth distance labels enables it
to associate visual features with varying distances [20], [21],
and make accurate distance predictions. Visual features often
correlate with the distance between the camera and the drone,
with changes in size, perspective, or sharpness as the drone
moves closer or farther away. Training on a diverse dataset
enables the model to learn these correlations, leading to more
effective distance estimation. The presence of convolutional
layers facilitates the extraction of the non-linear relationship
between visual features and distance by capturing relevant
features across various scales and orientations.
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A. Regressor architecture

Fig. 2 depicts the CNN-based distance regressor architec-
ture. It consists of four convolutional layers, each followed
by batch normalization, ReLU activation, and average pool-
ing. Starting with an input layer, the first convolutional layer

Fig. 2: The architecture of DroneRanger (CNN-based dis-
tance regressor)

utilizes 8 filters of size 3× 3. Batch normalization enhances
training stability and speed by normalizing previous layer
activations. The nonlinearity of ReLU helps to capture com-
plex data patterns. Following this, average pooling reduces
feature map dimensions by half using a 2×2 operation with
a stride of 2. This sequence repeats three times, with filter
numbers increasing progressively (16, 32, and 32 filters in the
three following layers, respectively). Dropout regularization,
applied next, randomly sets 20% of activations to zero during
training, preventing overfitting and enhancing generalization.
The fully connected layer reduces output to a single scalar
value, serving as the regression head. Finally, the regression
layer computes the loss between the predicted and true
distances and minimizes the regression error during training.
We call this network as DroneRanger. Simulation results
demonstrate the DroneRanger’s acceptable performance in
distance estimation, achieving low absolute error.

1) Network input: The initial layer sets the network’s
input size according to the dimensions of the training images
(i.e., the size of cropped bounding box), ensuring uniformity
in the expected input image size. This study explores three
scenarios for input images:

• Input Type 1: In the first case, a fixed-size rectangular
area measuring V ×H pixels (representing the number
of pixels along the vertical and horizontal axes, respec-
tively) is cropped around the center of the bounding
box. This cropped image is then fed into the network
(Fig. 3).

• Input Type 2: In the second case, the input image is
a cropped version of the bounding box area generated
by the object detection network. When the bounding
box size differs from V ×H pixels, the cropped image
is resized to match these dimensions using the Bicubic
interpolation method (Fig. 3).

• Input Type 3: In the second input type, resizing all
cropped bounding boxes to the fixed size of V × H
pixels causes the actual size of the drone in the image
to be lost. Given that this size information is indicative
of the drone’s distance to the camera (farther drones
appear smaller in the captured image), the third input
type addresses this by utilizing the same images as type

2. However, additional information is imported into the
network, namely, the width and height of the bounding
box in pixels.

(a) Input Type 1 (b) Input Type 2

Fig. 3: Illustration of input images to the network. (a) The
drone maintains its actual size in the image, but the extended
bounding box may contain various background forms. (b)
In the resized image, the drone no longer maintains its
actual size, leading to the loss of the inherent ”3D distance-
bounding box size relation”. Consequently, the third input
form is proposed to address this limitation.

Throughout this paper, V and H are set to 80 and 150 pixels,
respectively. These values are chosen based on the maximum
probable size of the detection bounding box, determined by
the size of desirable targets and the resolution of the captured
image. It is worth mentioning that all images are presumed
to be in the compressed JPEG format.

2) Loss function and robust regression using Huber loss:
As mentioned in the preceding section, accurate ground
truth distance values are essential for training the regression
network. This paper presents the training and testing of the
proposed network using both simulated and experimental
data. As it will be discussed in the results section, simu-
lation data, synthesized by AirSim©, allows for the precise
extraction of ground truth distance within the implemented
AirSim© scenario. However, in the practical testing setup
outlined in Section IV.B (Experimental Results), ground truth
distance data is obtained through GPS sensors on both the
observer and target drones. By utilizing GPS information
for each drone, the distance between them can be easily
estimated. Nevertheless, the inherent uncertainty in GPS data
introduces corresponding uncertainty in the ground truth
distance values, potentially resulting in outliers in the training
data.

The two most commonly used loss functions in DL
applications are the mean square error (MSE) and mean
absolute error (MAE), as shown in equations (1) and (2)
respectively:

MSE =
1

N

N∑
i=1

(yi − ŷi)
2 (1)

MAE =
1

N

N∑
i=1

|yi − ŷi| (2)

Here, yi and ŷi represent the ground truth and estimated
values (i.e., the output of the deep network) for the desired
variable (in this case, the distance). While MSE loss exhibits
a fast learning rate owing to its convex nature, it can be
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sensitive to outlier values due to the square function. On the
other hand, in MAE, all errors are weighted equally due to
the linearity model, making it more robust to outliers than
MSE. To leverage the advantages of both a fast learning rate
and robustness, the Huber loss was introduced in [22]:

Lδ(yi, ŷi) =

{
1
2 (yi − ŷi)

2 if |yi − ŷi| ≤ δ,

δ|yi − ŷi| − 1
2δ

2 Otherwise.
(3)

Within this framework for the loss function, a weighted
MAE loss form is applied to the case of larger errors (i.e.,
outliers), whereas for smaller error values, the quadratic
MSE is employed. This study investigates the impact of both
MSE and Huber loss functions on the performance of the
regression network.

IV. PERFORMANCE ANALYIS

A. Simulation results

This section evaluates the performance of our proposed
distance estimation method using simulated data from
AirSim©, utilizing our previously published dataset [23].
The dataset includes the drone’s Cartesian coordinates (XYZ
values) in AirSim©’s internal frame, facilitating evaluation
of the localization algorithm. AirSim© includes an internal
”object detection” feature that directly offers bounding box
information without requiring the use of a separate object de-
tection network. This guarantees consistent access to bound-
ing box data across all recorded frames, minimizing the
chance of missed detections typical in DL-based detection
networks. Furthermore, this feature provides ground-truth
(GT) bounding box information, potentially eliminating the
need for manual annotation (although this is not within the
scope of the current study).

Analyzing the simulated dataset will provide a crucial
benchmark for evaluating the accuracy of the localization
algorithm. Assessing the performance of the simulated data
offers valuable insights into the capabilities and constraints
of the method before its deployment in real-world settings.

The stochastic gradient descent optimizer is utilized with
an initial learning rate of 1 × 10−5 to train the regression
network in Fig. 2. Also, the number of epochs is set to be
20. In each case, 80% of the dataset is allocated for training,
while the remaining 20% is set aside for testing/validation.

To begin evaluating the performance of the distance esti-
mation method, we first examine a basic scenario featuring
one type of drone across different weather conditions. A
Quadrotor model is simulated in the Blocks environment
under sunny, rainy, and snowy conditions, each comprising
around 800 samples of simulated data (equivalent to 1920
and 480 samples for the training and testing phases, respec-
tively). Fig. 4 displays sample images from both the training
and testing datasets.

The histogram in Fig. 5 illustrates the distribution of
the drone’s distance and width (based on the size of the
bounding box before resizing) in both the training and testing
datasets. These figures indicate that the majority of drone dis-
tances fall within the 20 to 100-meter range, with a notable

(a) Training data (b) Testing data

Fig. 4: Some sample input images (Input Type 2) used to
train and test the deep network in the synthetic dataset case
(scenario 1)

concentration around 30 to 40 meters, suggesting diverse
distance scenarios in the dataset. However, the distribution
of data versus distance is not uniform, as depicted in Fig.
5, with some distances having less data. This discrepancy
is attributed to the manual control of the drone during
data capture in AirSim©, where human actions influenced
key presses, resulting in fewer data instances for certain
distances. Furthermore, most bounding boxes have a width
below 150 pixels, aligning with the predetermined fixed size
of input images for the CNN regression network (considering
a camera with a field of view of 82 degrees and a resolution
of 1080× 1920 pixels).

(a) Distance (b) Bounding box width

Fig. 5: Distribution of the distance and the size of the
bounding box in the first simulated scenario

In the case of considering the MSE loss, the Root Mean
Square Error (RMSE) of distance estimation error values for
the three input types mentioned in the preceding sections
are 5.89, 5.87, and 3.49 meters, respectively. Although the
performance of both the extended and resized bounding box
inputs (Input Type 1 and 2) is almost the same in this
scenario, it is important to note that the dataset used in
this analysis solely consists of samples from the Blocks
environment. In this environment, most samples feature a
blue sky background (Fig. 4). In such instances, the ex-
tended bounding box (as in Input Type 1) contains minimal
information, primarily the blue sky background in almost all
the samples. Conversely, in environments with backgrounds
other than blue sky, the extended bounding box area contains
significantly varying backgrounds among dataset samples
(see Fig. 3, for example). This, in turn, can potentially
degrade the performance in the Input Type 1 case. However,
this variation can adversely affect the performance of the
output associated with Input Type 2. In that case, where
only the bounding box area is cropped, the background
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behind the drone does not occupy a substantial portion of
the imported images to the network, minimizing its influence
on the results. Finally, as evident from the comparison of
results between Input Types 2 and 3, adding information
about the actual size of the bounding box can help in
enhancing distance estimation performance. As previously
noted, the inherent information in the bounding box’s actual
size provides insights into the target drone’s distance from
the camera.

To validate the claim about the difference between the In-
put Types 1 and 2, and compare the results with the previous
case, the same drone model is considered in two Blocks and
City Park environments. Considering 800 frames for each
environment, with 80% allocated for training and 20% for
testing/validation, we utilize 1280 frames for training and
320 frames for testing/validation, respectively. Examples of
the captured images can be seen in Fig. 6 (the distribution
of the data is depicted in Fig. 8).

(a) Training data (b) Testing data

Fig. 6: Some sample input images (Input Type 2) used to
train and test the deep network in the synthetic dataset case
(scenario 2)

The scatter plot, illustrating the estimated distance versus
the actual value, is presented in Fig. 7. As expected, the
regression network exhibits improved performance in the
case of Input Type 2 compared to Type 1, with the RMSE
decreasing by approximately 25%, from 9.89 to 7.37 meters.
Moreover, the favorable impact of incorporating information
about the bounding box is confirmed again in this scenario
through a comparison of the results between Input Types 2
and 3. In addition to RMSE, the coefficient of determination
R2 serves as a statistical metric, reflecting the portion of the
variability in the dependent variable explained by the inde-
pendent variable [24]. In scatter plots illustrating estimated
distance against true values, incorporating the R2 value offers
an understanding of how well the regression line aligns with
the data points, indicating the goodness of fit. This coefficient
can be calculated using the following equation [24]:

R2 = 1− SSres

SStot
(4)

where, SSres and SStot denote the sum of squared errors
between the ground truth and estimated values, and the total
sum of squares, respectively. The computed R2 values for
the three input types in Fig. 7 are 0.8419, 0.9122, and
0.9776, respectively. These findings highlight the superiority
of Input Type 3 over the other two types. According to
the findings presented, it seems that the third type of input
(resized bounding box image area plus its size in pixels)

(a) Input Type 1 (b) Input Type 2

(c) Input Type 3

Fig. 7: Scatter plot depicting the estimated distance versus
the true value for the second simulated scenario

(a) Distance (b) Bounding box width

Fig. 8: Distribution of the distance and the size of the
bounding box in the second simulated scenario

yields the most favorable result. This input format effectively
addresses the limitations of the other two types, overcoming
the negative impact of the background in the extended
bounding box case (Type 1) and mitigating the loss of the
actual bounding box size (Type 2). In the upcoming section,
the proposed method will be applied and analyzed using real
data. Additionally, the impact of the chosen loss function will
be examined.

Finally, as a critical analysis, the performance of the CNN
regression network should be evaluated on unseen data. In
all previous instances, the same dataset was utilized for both
the training and testing phases, thereby maintaining identical
data distributions. However, it is common to observe a
domain shift between these two sets in most scenarios. To
address this, the network was trained using Quadrotor and
DJI Mavic drones but tested on a dataset recorded using
DJI FPV for the final simulation in this section (an unseen
drone type in the test data compared to the training one).
The second type of input is utilized here, with all other
simulation parameters remaining consistent with previous
examples. The only modification made is to adjust the
number of frames for the training and test/validation steps to
1600 (800 frames from both the Quadrotor and DJI Mavic
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drones) and 800 (from the DJI FPV), respectively. The results
are depicted in Fig. 9. As illustrated, the RMSE increased
to approximately 8.2 meters, though it remains within an
acceptable range. Future investigations should delve deeper
into cases involving domain shift, where differences in the
distributions of training and testing data are present. In terms

Fig. 9: Scatter plot depicting the estimated distance versus
the true value for the case of domain shift (training: Quadro-
tor and DJI Mavic drones, testing: DJI FPV)

of computational load, it is worth mentioning that after
conducting 5 independent inference runs of the DroneRanger
network, each comprising 1330 frames, the average inference
time per frame is under 5ms on an Ubuntu desktop equipped
with a 16GB Nvidia RTX 4000 GPU.

B. Experimental results

While simulations offer controlled settings for training
and testing deep networks, their real-world performance is
crucial. Undesirable effects such as lighting variations, occlu-
sions, and perspective shifts in real-world scenarios introduce
complexities that affect the network’s generalization. Hence,
evaluating the performance of the regression network on the
practical data is essential. This section outlines the network’s
application on the recorded dataset from the conducted real
experiments and discusses its performance.

The experiments involved deploying a quadrotor drone as
the target (Fig. 10), while another quadrotor drone with a
camera captured images of drones at different distances (Fig.
11). The air-to-air configuration of the test introduced extra
complexities because of the relative motion and perspective
shifts between the camera and the target drone.

(a) Close view (b) Drone in the sky

Fig. 10: The target drone in the experimental test

Fig. 11: The drone equipped with the onboard camera as the
observer drone

The observer drone had a camera with a 62.7-degree field
of view, capturing frames at a resolution of 1080 × 1920
pixels and recording videos at a frame rate of 30 frames
per second. Finally, it should be mentioned that there were
GPS sensors mounted on both drones. The data from these
two sensors were utilized to extract the GT distance values
between the target and observer drones.

The practical dataset comprises of diverse scenarios, with
the quadrotor positioned at distances ranging from 20 to
approximately 100 meters from the camera, mirroring real-
world situations. The drone’s width varied from fewer than
20 pixels to over 120 pixels in the frames. Recorded during
the observer drone’s hovering phase, the camera captured
videos of the target drone executing different maneuvers
(Fig. 12), including approaches, retreats, lateral movements
(equivalent to different ground truth azimuth angles relative
to the camera), and altitude changes (various elevation an-
gles). Fig. 13 displays the 3D trajectory of both the observer

Fig. 12: The flying paths of the target drone in front of the
observer one in the experimental test

and target drones during the training phase. It reveals that
the target drone maintained distances between roughly 20 to
100 meters from the observer drone’s camera. However, there
were instances where the target drone paused at different
distances, hovering in position. These stationary intervals are
evident in the histogram representation of the recorded data
shown in Fig. 14.

The training dataset comprised 1816 images. A subset of
sample images from the training data, is depicted in Fig.
15. These images exhibit diverse backgrounds and lighting
conditions, crucial for training DL-based methods. This
diversity allows the model to learn robust features, enhancing
its ability to handle real-world variations effectively.

447

Authorized licensed use limited to: University of Ottawa. Downloaded on November 22,2024 at 15:46:33 UTC from IEEE Xplore.  Restrictions apply. 



(a) 3D trajectory

(b) X-Y view

Fig. 13: Flight trajectory of the drones in the real scenario
(the one which used for extracting the training data)

(a) Distance

(b) Bounding box width

Fig. 14: Histogram displaying the distribution of training data
in the experimental test

Based on the results outlined in the synthetic data section,
Input Type 3 exhibits the most superior performance among
the three suggested input types in the preceding sections.
Consequently, the regression network was trained using this
input format. Regarding the loss function, as detailed in

Fig. 15: Some sample input images (Input Type 2) used to
train the regression network in the experimental test

Section III, since the GT values were derived from GPS
sensors, both MSE and Huber losses were employed and
compared. Other settings for training the networks were
selected similar to the synthetic data section.

Several flight tests were run using the two drones. As
an illustration of the test data, consider the sample input
images depicted in Fig. 16. As evident from this figure,
the drone exhibited various orientations throughout the test.
Additionally, the camera captured the target drone from
different viewing angles. The total number of sample images
in this test amounts to 2243.

Fig. 16: A subset of input images (Input Type 2) provided to
the regression network during the experimental testing phase

The results of applying the trained network to this dataset
are presented in Fig. 17. To smooth the estimated distance
output, a simple moving average (MA) filter with a length of
10 is applied to the output. It is worth noting that the recorded
video has a frame rate of 30 frames per second, resulting in
a time interval of 1/30 seconds between consecutive frames.
Considering this time resolution, applying an MA filter with
10 samples would correspond to an interval of approximately
0.33 seconds. Within such intervals, the location of the
drone does not exhibit significant changes, allowing us to
effectively utilize the MA filter to smooth out the data. As
observed, the target drone covered distances ranging from
approximately 40 to 100 meters to the camera. The RMSE
for the MSE and Huber loss functions is 6.87 and 4.96
meters, respectively. The adoption of the robust regression
network with the Huber loss resulted in an improvement of
approximately 2 meters in the RMSE of the error. Finally,
this curve illustrates the feasibility of estimating the 3D
distance between the target drone and the camera using solely
the 2D captured images.

V. CONCLUSIONS
This study introduced a novel method for drone distance

estimation employing deep learning techniques, leveraging
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Fig. 17: Estimated distance for the test data in the experimen-
tal test by the trained regression network using two forms of
the loss function (Input Type 3)

both simulated and real-world data. Our results indicate
that incorporating actual bounding box size in addition to
the cropped image within the bounding box, significantly
improves distance estimation accuracy. These simulation
results are further validated through practical flight tests and
the analysis of aerial vision data captured by a drone. Despite
challenges such as varying lighting conditions and perspec-
tive changes, our proposed method demonstrates feasibility
and robustness in drone distance estimation based solely on
using a cost-effective vision camera. The simple architecture
of the CNN network, coupled with its low computational
load, enables real-time implementation. Further investiga-
tions could explore additional factors such as domain shift
(in the background, light/weather conditions, and even drone
type) and integration with other sensor modalities to enhance
performance and applicability in complex environments.
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