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Abstract—This paper introduces the multi-view Air-to-Air
Simulated Drone Dataset (A2A-SDD), a comprehensive simulated
drone dataset captured using AirSim©. The dataset encompasses
diverse scenarios where one or two drones are pursued by one
to three monitoring drones. It includes five types of drones,
such as DJI models and a generic quadrotor model, recorded
in various weather conditions and environments. Both loaded
and unloaded drones are represented, and the dataset provides
extensive annotations, including object detection and XYZ co-
ordinates. The dataset offers potential applications in training
deep learning-based models for counter-UAV measures such as
localization and payload detection in single- and multi-view cases.
Furthermore, preliminary experiments demonstrate the promis-
ing performance of trained networks on practical data, affirming
the dataset’s value in addressing real-world drone challenges
using optical sensors. The synthetic dataset is publicly avail-
able on GitHub (https://github.com/CARG-uOttawa/Multiview-
Air-to-Air-simulated-drone-dataset).

Index Terms—Drone, Uncrewed Aerial Vehicle (UAV),
Counter-UAV measures, Simulated dataset

I. INTRODUCTION

Uncrewed Aerial Vehicles (UAVs) have seen a signifi-
cant rise in their applications across various sectors [1]–[7].
Their versatility and small size have made them popular for
commercial and governmental purposes, including agriculture,
transportation, surveillance, and photography. However, their
widespread use raises concerns about safety and security, such
as illegal activities and unauthorized flights near restricted
areas and airports. As a result, there is a growing need
for countermeasures that involve the detection, localization,
classification, and neutralization of UAVs.

Based on the type of available sensors, counter-UAV mea-
sures can be broadly classified into two categories: ground-
based and aerial. Ground-based solutions encompass a range

of sensors and technologies, including radars and pan-tilt-
zoom (PTZ) cameras [8], [9]. However, these ground-based
platforms have limitations in terms of flexibility and coverage
area for long distances, which may hinder their effective-
ness in mitigating potential threats posed by unauthorized
vehicles. To address these limitations, another solution is to
deploy an observer drone in proximity to the target drone
for countermeasures. By utilizing the mobility of the observer
drone, the defense coverage area can be expanded, thereby
enhancing the overall performance against the target drone.
Nevertheless, it is not feasible to mount multiple sensors due
to constraints such as payload size, weight, and limited power
supply on the observer drone. In such cases, a vision camera
emerges as a cost-effective solution which results in an air-
to-air case. Vision-based sensing offers several advantages,
including affordability, compact implementation, and lower
power consumption.

The field of computer vision has witnessed significant
advancements, particularly in deep learning (DL) algorithms,
which have made optical sensing a highly appealing approach
for drone detection and classification [10], [11]. Researchers
have explored the use of cameras with different fields of view
(FOV), combining wide field coverage with narrow FOV to
achieve higher resolution and enhance identification perfor-
mance. This has led to the development of various DL-based
visual data analysis methods specifically tailored to address the
challenges associated with drone detection and classification.
However, DL methods typically require a substantial volume
of data for effective training. Gathering a significant amount of
training data and annotating it through real-world tests can be
both expensive and time-consuming. Moreover, practical tests
are often subject to uncontrollable factors such as weather con-
ditions, which can introduce variability in the data. To mitigate
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these challenges, simulations present a valuable alternative.
Simulations provide a controlled environment where various
factors, including environmental conditions, can be precisely
manipulated. This allows for the generation of large amounts
of annotated data without the logistical constraints associated
with real-world data collection. Due to the scarcity of publicly
available data in the field of counter-UAV measures, this paper
presents an air-to-air simulated drone dataset for DL-based
solutions which includes various drone types, backgrounds,
and weather conditions.

A. Literature review

By leveraging simulations, researchers can expedite the
training process and explore a wider range of scenarios,
enhancing the robustness and generalization capabilities of
DL models for diverse real-world applications. For instance,
to address challenges related to the high cost and privacy
concerns of collecting real-world data, the authors in [12]
proposed a substantial synthetic dataset tailored for Smart City
applications. This dataset focuses on multiple vehicle tracking
and segmentation across diverse camera views, providing a
valuable resource for research in the field.

For the special case of air-to-air counter-drone problems,
only two publicly available datasets exist [13], [14]. The
authors in [13] presented an approach to detect and track small
UAVs using a single camera mounted on another UAV. The
proposed algorithm estimates background motion through a
perspective transformation model and identifies salient points
in the background subtracted image. It then applies optical
flow matching to determine the spatio-temporal features of
each moving object and classifies them based on their motion
patterns compared to the background. The UAV-to-UAV de-
tection and tracking dataset (U2U-D&TD dataset) utilized in
this study comprises 50 video sequences with up to 8 UAVs
captured in each frame. The videos were recorded outdoors
using a GoPro camera mounted on a customized delta-wing
airframe. Each video has a duration of approximately one
minute, a frame rate of 30 fps, and a resolution of 1080×1920
or 960× 1280. Despite the potential of this dataset for multi-
target detection and tracking applications [15], there are certain
limitations. Firstly, it lacks precise position information for
both the observer and target drones, which is essential for
addressing localization challenges. Additionally, with only
one camera available, the dataset does not provide sufficient
information to tackle multi-view problems effectively.

The authors in [16] proposed an approach for detecting
small UAVs and aircraft filmed against complex backgrounds.
By combining appearance and motion cues, the object-centric
motion stabilization technique achieves effective classification
of spatio-temporal image cubes. To evaluate the effectiveness
of their approach, they constructed two datasets. The UAV
dataset comprises 20 video sequences and 4000 frames captur-
ing drones (up to two objects) in diverse lighting and weather
conditions, both indoors and outdoors. On the other hand,
the aircraft dataset consists of 20 publicly available videos
featuring radio-controlled planes. These videos were filmed

from different angles and included variations in plane poses.
The videos vary in length and resolution, offering a diverse
range of scenarios for evaluation. The recorded datasets lack
the location information and the multi-view case is the same
as [13].

B. Introduced dataset

This paper presents a multi-view air-to-air simulated drone
dataset (A2A-SDD) using AirSim. In all cases, one or two
coming drones are chased by one to three monitoring drones.
The dataset is recorded by importing five types of drones into
AirSim©, including various DJI models (Phantom, Mavic,
FPV, and Inspire) and a generic quadrotor. The videos were
recorded in several weather conditions, including sunny,
rainy, and snowy weather. Drones were controlled to fly at
different distances from the camera and occupied a range of
pixels from 20 to higher values, corresponding to distances
between more than 100 meters and less than 10 meters,
respectively. Three different environments were selected to
have both natural scenes, such as trees, rocks, and lakes,
and some man-made objects, such as buildings and bridges.
This feature helps to have various types of backgrounds in
the collected dataset. All frames were annotated using the
”object detection” feature in AirSim©. Loaded drones were
also modeled in AirSim©, and the dataset contains both
loaded and unloaded drones. The XYZ information, as well
as the quaternion values for all drones and frames, are also
provided. The dataset was captured using multiple cameras,
resulting in a multi-view recorded dataset. The last three
mentioned features are the ones that are not available in the
other datasets. The diverse dataset enables the training of
deep learning methods for counter-drone problems such as
classification, localization, and payload detection.

The paper is structured as follows: The next section details
the procedure for creating the simulated dataset and provides
specifications. Section III provides an overview of the prob-
lems addressed using deep networks. Section IV showcases
samples from the recorded dataset and presents the results
for solving these problems using the dataset. It includes the
outcomes from both simulated and practical data. The paper
concludes with a summary of the findings.

II. SIMULATED DATASET USING AIRSIM

A brief explanation of the creation of the Air-to-Air Simu-
lated Drone Dataset (A2A-SDD) using AirSim© is given in
this section. The dataset aims to address the lack of pub-
licly available datasets for air-to-air counter-UAV problems.
Various drone models, including DJI Phantom, Mavic, FPV,
Inspire, and a generic quadrotor, were imported into AirSim
to simulate different flying trajectories and collect the data.

The procedure for importing custom drone models into
AirSim© involves several steps. Firstly, the 3D models of the
drones are prepared by extracting the body and one propeller
using 3D design tools such as Autodesk 3ds Max [17]. These
components are then combined into a single object, which
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Fig. 1: Preparing the 3D model of loaded DJI Phantom with
cylinder shape payload

is exported as an fbx file for use in AirSim© simulations.
Afterwards, the imported drone models are constructed by
replacing the corresponding parts of the default drone model
in AirSim©. This is done by duplicating the default model
and substituting the body and propeller with the imported
objects. The blueprint editing window in AirSim© is used
for this purpose. To enhance the diversity of the dataset,
we simulate various forms of payloads attached to the drone
models. The process involves separately creating the payload
using 3D design tools and then merging it with the drone
body to create a complete 3D model of the loaded drone
(Fig. 1). In addition to importing custom drone models and
simulating payloads, custom environments in AirSim© are
utilized for the simulations. These environments include the
Blocks, Landscape Mountains, and City Park environments.
These environments provide a range of natural and man-made
elements, such as trees, rocks, lakes, buildings, and bridges as
the backgrounds for drone flights.

By following this procedure, we successfully import dif-
ferent drone models, simulate payloads, and generate diverse
backgrounds, resulting in a comprehensive simulated air-to-
air dataset for counter-UAV problems. As some examples of
the developed dataset, Fig. 2 shows two models of simulated
drones.

A. Specifications of the simulated dataset

This section offers specifications about the dataset, high-
lighting its characteristics. To provide an overview of the
dataset, it is important to highlight the following details:

• The dataset includes five types of drones: DJI Phantom,
Inspire, Mavic, FPV, and a generic drone model. We
will refer to this model as the Quadrotor in this paper,
assuming an approximate width of 70 cm, accounting for
the widely spread propellers.

• In all scenarios, one or two coming drones are chased by
one to three monitoring drones.

• The simulations are conducted in various environments
such as Blocks, Landscape Mountains, and City Park.

• Different weather conditions are simulated, including
sunny, rainy, and snowy cases.

• The dataset also incorporates various payload conditions,
including unloaded drones, drones with attached loads,

(a) DJI Mavic drone model in the City Park environment

(b) DJI Inspire drone model in the snowy Blocks environ-
ment

Fig. 2: Sample frames of the developed dataset

drones with hanging loads, and payloads with different
colors and shapes.

For each case, around 1000 frames with a resolution of
1080×1920 pixels were recorded (for each camera) and anno-
tated, and available through the provided link. The annotation
files include the following information:

• The XYZ (i.e. Cartesian) coordinates of all the observer
drones work as the platform for mounting the cameras

• The XYZ (i.e. Cartesian) coordinates of all the target
drones in the captured image

• Bounding box information for each drone in every indi-
vidual frame

• Timestamps to synchronize recorded videos by different
cameras

• Flags indicating the detection status of a specific drone
in each frame, as well as whether the drone is loaded or
unloaded

The A2A-SDD addresses the limitations of existing datasets
by providing a comprehensive and diverse collection of simu-
lated air-to-air drone data. The dataset’s characteristics, includ-
ing diverse drone models, simulated environments, weather
conditions, and payload variations, make it suitable for training
and evaluating deep learning models using optical sensors.
In addition, it introduced two distinct new features. Firstly,
the simulation incorporated a multi-view case by utilizing
multiple cameras, providing valuable additional information
that can significantly benefit the development of localization
and payload detection algorithms. This multi-view perspec-
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(a) 1st camera (b) 2nd camera

Fig. 3: A sample of multi-view recorded scene with two
cameras and two target drones in the Landscape Mountains
environment (images are cropped for better illustration)

tive enhances the understanding of the scene and improves
the accuracy of the algorithms. Secondly, detailed location
information for all cameras and drones was included in the
dataset, enabling the resolution of both single-view and multi-
view localization problems. Importantly, these features are
applicable and accessible in both single-target and multi-target
scenarios, contributing to the dataset’s versatility and utility in
various applications. As an example, Fig. 3 illustrates a multi-
view test case featuring two observer drones equipped with
cameras and two target drones. In Fig. 3a, the image captured
by camera 1 shows both the second observer drone and
two target drones, with the second observer drone positioned
between the targets. Conversely, Fig. 3b presents the scene
captured by the second camera. It is evident that the second
observer drone can only observe one of the target drones. Such
cases allow for the exploration of counter-UAV challenges,
such as localization, by leveraging sensor fusion between the
cameras.

III. CONSIDERED PROBLEMS

Based on the above-mentioned specifications, the developed
A2A-SDD dataset is diverse enough to be used in training DL-
based methods. In this paper, two of the potential problems
have been addressed using deep networks such as a convolu-
tional neural network (as a distance regressor), and some deep
learning-based classifiers for distinguishing between loaded
and unloaded drones.

A. Localization

Localization refers to the process of determining the precise
position of a drone in a given environment. Accurate drone lo-
calization is essential for enabling autonomous navigation, pre-
cise control, and coordination of multiple drones in complex
scenarios. Vision-based localization techniques leverage visual
data, such as images or videos captured by onboard cameras
or external sensors, to estimate the drone’s position [18], [19].
Given that the developed dataset includes XYZ coordinates

of both the observer and target drones, it provides ground
truth location information, making it suitable for addressing
localization challenges. As a result, localization is one of the
selected problems considered in this study. The most challeng-
ing part of localization using 2D images is distance estimation.
One fundamental challenge arises from the inherent loss of
depth information in a two-dimensional representation. In this
paper, we propose to leverage convolutional neural networks
(CNNs) for regression tasks, estimating the distance of a
drone from the captured image. The considered CNN network
consists of 4 convolutional layers (with 8, 16, 32, and 32
filters, respectively) plus a fully-connected one as the last layer.
Average pooling layers as well as batch normalization ones
are also used in the architecture to improve training speed and
dimension reduction. The CNN takes a cropped image within
the drone’s bounding box as input and outputs the estimated
distance. As part of the preprocessing step, the cropped image
is resized to a fixed size to ensure compatibility with the
network. It is important to mention that the localization block
is applied after the drone detection step. This means that
an object detector, such as YOLO1 [20], is used initially
to detect the drone and extract its bounding box. However,
in the case of simulation data, this information is obtained
directly from AirSim©. Additionally, the drone’s azimuth and
elevation angles have been estimated based on its position
in the captured image using a simple pinhole model for the
camera.

B. Payload detection

Drone payload detection is an important research problem
that concerns with classification of drones into two distinct
categories: loaded and unloaded [21]–[23]. The ability to
accurately identify whether a drone is carrying a payload or
not is of great significance in various applications, including
security, surveillance, law enforcement, and border control.
In this study, the ResNet-50 and ResNet-101 architectures
[24] are used as the classifier for addressing the loaded vs.
unloaded drone classification problem. These networks belong
to the ResNet family, and have proven to be highly effective in
various computer vision tasks, including image classification.
With 50 and 101 layers, respectively, these architectures can
capture intricate features and learn discriminative represen-
tations, making them well-suited for complex classification
problems.

IV. SIMULATION RESULTS

The first part of the simulation section involves training the
CNN network for 3D localization using two test cases in terms
of the type of drones and background, and with different levels
of complexity (explained in the upcoming lines). The dataset
used for training includes multiple simulation conditions. To
train the CNN network, the stochastic gradient descent opti-
mizer is employed with an initial learning rate of 1×10−5. The
network is trained for 10 epochs to optimize its performance.

1You Only Look Once
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(a) Training data (b) Testing data

Fig. 4: Some sample input images to the regression network
for the first simulated test case

(a) Distance (b) Bounding box width

Fig. 5: Histogram of data for the first simulated test case for
localization

In each case, 80% of the dataset is utilized for training, while
the remaining 20% is reserved for testing/validation. In the first
case, we consider the loaded and unloaded Quadrotor model
in both Blocks and City Park environments. Examples of the
captured images can be seen in Fig. 4.

This data exhibits diverse backgrounds, and the distribu-
tion of backgrounds may differ between the training and
test datasets. However, despite these challenges, the CNN
network was able to estimate the distance, as shown in Fig.
6. The RMSE for distance estimation was calculated to be
approximately 9.24 meters in this case. The histogram of the
drone’s distance and width is presented in Fig. 5 for both
the training and testing datasets. The analysis reveals that the
majority of drone distances fall within the range of 20 to 100
meters, with a particular concentration of around 30 to 40
meters. Consequently, the network achieved better results for
distances around 40 meters due to the abundance of data for
this particular case. The reduced deviation from the actual
distance in Fig. 6 reflects this improved performance.

The inclusion of various types of drones with different sizes
and shapes adds another layer of complexity to the case. In
the second simulated case, we simulate four distinct drone
models: DJI Mavic, DJI FPV, DJI Inspire, and Quadrotor. Each
of these drone types possesses its own unique characteristics,
such as differing dimensions and shapes. By incorporating this
diverse range of drones into the Blocks environment, we create
a more challenging distance regression problem. Samples of
input images for this test case can be seen in Fig. 7.

The histogram in Fig. 8 depicts the distribution of distance
values in the dataset. It shows that we still have a considerable
number of observations with distances ranging from 10 meters

Fig. 6: Scatter plot of the estimated distance vs. the actual
value for the first simulated test case

(a) Training data (b) Testing data

Fig. 7: Some sample input images to the regression network
for the second simulated test case

up to approximately 100 meters. The RMSE is calculated to
be around 7.8 meters for this complex case.

The aforementioned results highlight the efficacy of the
CNN regression network in estimating the distance of the
detected drone within the bounding box. The calculated RMSE
indicates that this method can achieve accuracy levels compa-
rable to GPS measurements. However, it is important to note
that the simulated dataset includes various other backgrounds
and conditions. As a path for future research, this allows a
comprehensive evaluation of the method’s performance and
opens up the possibility for its effectiveness and robustness in
more diverse scenarios.

For the next part, we addressed the binary loaded vs.
unloaded drone problem using the deep network structure
described earlier. The simulation parameters of the ResNet-
50 and 101 models were set to 25 epochs, a batch size of 64,

(a) Distance (b) Bounding box width

Fig. 8: Histogram of data for the second simulated test case
for localization
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Fig. 9: Scatter plot of the estimated distance vs. the actual
value for the second simulated test case

Fig. 10: Distribution analysis of the dataset for the test case
used for the payload detection problem

and a learning rate of 0.03. The Stochastic Gradient Descent
(SGD) optimizer has been selected for this problem. As an
sample case, we consider the binary problem for a dataset
that includes unloaded data from Quadrotor, DJI Mavic, and
DJI FPV drones, and loaded data consisting of Quadrotor with
an orange box, DJI Mavic, and DJI FPV with a gray box. The
dataset covers various weather conditions such as sunny, rainy,
and snowy. For each scenario, a total of 800 frames were cap-
tured, with 70% allocated for training, 15% for validation, and
15% for testing. This results in a total of 7,200 frames (5,040
for training, 1,080 for validation, and 1,080 for testing) for
each unloaded and loaded case, amounting to 10,080 frames
in total for training the loaded/unloaded classification task.
Figure 10 presents an analysis of the collected dataset. The
histogram in the top-left subfigure demonstrates a balanced
distribution of loaded and unloaded classes, indicating an equal
number of samples for each class. The bottom-left scatter
plot visualizes the drone’s location within the normalized
frame region, showing that the drone is distributed across
various parts of the frame. The top-right subfigure displays
the normalized width and height of the ground-truth bounding
boxes for different frames, providing insights into the size of
the drones in the dataset. The bottom-right subplot illustrates
the relationship between the bounding box size and the drone
size, presenting a scatter plot that depicts the vertical and
horizontal dimensions.

The histogram of the bounding box width for the training

Fig. 11: Histogram of bounding box width for the training data
in the test case utilized for the payload detection problem

data can also be seen in Fig. 11 which shows the maximum
frequency of width to be around 20 to 30 pixels. The simu-
lation results show an accuracy of around 97% and 99% for
the ResNet-50 and 101, respectively.

A. Experimental results

Validation experiments were performed on the A2A-SSD
dataset to evaluate its similarity to real-world data. This
involved training networks using simulated data and subse-
quently testing their performance on real-world recorded data.
The practical data was captured using a quadrotor at vary-
ing distances ranging from 20 to approximately 100 meters
from the camera (ground-truth value was recorded using GPS
sensor). In order to simulate a loaded drone, a box-shaped
payload measuring 7.8× 9× 15cm3 was attached beneath the
drone. For the payload detection problem, the performance
was calculated based on around 2000 frames for the loaded
and unloaded cases. Notably, the camera was mounted on
a chasing drone, resulting in an air-to-air test case. For the
distance estimation problem, the ground truth and estimated
distances are plotted in Fig. 12 with an RMSE of around 8.4
meters. For the payload detection problem, the classification
accuracy achieved is 88% and 92% for the unloaded drone
and 87% and 89% for the loaded case for the ResNet-50 and
101, respectively. The results demonstrate the efficacy of our
simulated dataset in training the classification and regression
network. The recorded practical data will be made available
soon.

V. CONCLUSION

This study presented a simulated multi-view air-to-air drone
dataset, offering a comprehensive collection of various drone
types, backgrounds, and weather conditions. The dataset stands
out from existing datasets due to two distinct features: its
multi-view perspective and the inclusion of location informa-
tion for all cameras and drones. Deep networks were employed
to address specific problems within the dataset, and the trained
networks were tested on practical datasets. The preliminary
results demonstrated the promising performance of the trained
networks on previously unseen data, showcasing the dataset’s
wealth of information and its potential for solving real-world
drone-related challenges using optical sensors.
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Fig. 12: Ground truth and estimated distance for a typical
scenario
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