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UAV OBJECT TRACKING WITH MODULAR ARCHITECTURE 

Nathaniel Bowness, Master of Science in Computer Science, University of Ottawa, 2025 

Abstract 

This paper presents a modular architecture for UAV object tracking designed for deployment on 

embedded systems using Docker containers. The system integrates radar and video processing 

pipelines, combining detections with a GMPHD-based tracking algorithm to achieve near real-

time performance. The radar data processing algorithm effectively tracks hovering objects within 

a 0.18-second synchronization window, while the initial video pipeline demonstrates accurate 

distance estimation of static objects. Testing on an Nvidia Jetson Orin shows the system can 

process and record data within 0.2-second intervals, making it suitable for real-time applications. 

This work provides a solid starting point for UAV tracking on embedded systems, allowing for 

easy testing and improvements to individual pieces. The current solution has room for refinement 

and scalability to handle more dynamic environments and evolving requirements as algorithms 

improve over time.  
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1 Introduction 

Unmanned aerial vehicles (UAVs) have seen rapid adoption in many applications over the last 

few years. Their recent popularity can be attributed to their versatility, maneuverability, and cost-

effectiveness. Recent advancements in battery life and sensor technology have further advanced 

UAV effectiveness. Today, UAVs are commonly used in applications such as: agriculture [1], 

search and rescue [2], environmental monitoring [3], and object tracking of both aerial and non-

aerial object detection [4], [5]. 

The integration of UAVs with deep learning (DL) and other machine learning (ML) algorithms 

that can run directly on embedded hardware has significantly improved UAVs’ independence. 

[6]. These algorithms enable UAVs to perform complex tasks independently without relaying 

data to a central computer for processing. For instance, convolutional neural networks (CNNs) 

models such as YOLO can quickly process high-resolution images on a UAV [7]. This allows it 

to quickly and accurately classify fast-moving objects, which is essential for applications like 

monitoring traffic or wildlife. [3]. DL models are also capable of processing radar data to 

perform object detection, as demonstrated by the RadarFormer model created by Dalbah et al [8]. 

Using radar for object detection is particularly useful in conditions where visual sensors alone 

may fail, such as poor weather or visually cluttered environments. Using on-board UAV sensors 

and tailored DL modes has opened numerous ways to perform tasks. 

The combination of DL models and sensor data has also significantly enhanced UAV capabilities 

to perform object-tracking [9]. Object tracking is a computer vision technique that monitors the 

movement of objects seen through a UAV’s cameras and sensors over time [10]. By leveraging 

ML models that can analyze a stream of real-time data, a UAV can track various objects that it 

has identified in its vicinity [11]. Utilizing diverse sensor data in the object detection and 

tracking algorithm can be beneficial for operating in various environments. Different sensors 

allow the UAV to perform consistently across different conditions and obstacles, whereas a 

system with one type of sensor could not. The ability to track objects is crucial for many 

applications where UAVs monitor dynamic objects that may be continuously moving themselves 

or just with respect to the UAV. 
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Object tracking on UAVs is complex and presents many challenges due to their maximum load 

and battery life restrictions. These restrictions limit the UAV’s processing power, which in turn 

limits the complexity of algorithms that can be executed on board. It also means any algorithm 

must strike a careful balance between the performance of tracking the object and the computation 

processing required on the real-time data. As highlighted by Sampedro et al., UAVs must deploy 

ML-based techniques that are computationally efficient while still delivering reliable results [12]. 

Addressing these challenges requires using more efficient computable models. This can be done 

through either hardware optimization or improved algorithm design, as well as ML models that 

are tailored to operate in a resource-constrained environment. This could potentially be done 

through model quantization or other techniques.  

The primary motivation for this project is the need for a modular framework capable of 

supporting object tracking on embedded systems. Radar integration on UAVs provides an 

essential advantage for tracking objects in environments where visual sensors may face 

limitations, such as poor weather or visual clutter. The addition of video also adds the ability to 

classify and detect objects in the field of view quickly. Both fields constantly adapt, and the 

ability to test different algorithms and models or experiment with variations in processing raw 

sensor data is crucial for improving UAV tracking systems. With operating systems and hardware 

constantly evolving, designing a flexible framework to adapt is vital while remaining efficient on 

resource-constrained embedded devices. 
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2 Literature Review and Background 

2.1 FMCW Radar 

The frequency-modulated continuous wave (FMCW) technique [13], [14] is widely used in radar 

UAV detection due to its high-range resolution and capability to perform real-time surveillance 

[15]. Unlike pulsed radar systems, FMCW radars continuously transmit a frequency-modulated 

signal, commonly called a "chirp," that linearly increases or decreases in frequency over a set 

period, known as the chirp duration Tc. This technique allows for precise measurement of both 

the range and velocity of targets using relatively low-power [14]. An example of an increasing 

chirp can be seen in Figure 1. 

 

Figure 1: Representation of an FMCW chirp transmitted from a transmitter, Tx, for a chirp duration of Tc with a 
signal bandwidth of B. The reflected signal is later received td time later on each receiver channel Rx [16]. 

 

The following formula can approximate the linear sweeps of FMCW radars: 

𝑥௧(𝑡) = 𝐴𝑒௝൫௪௧ାగ మ൯ + 𝐴∗𝑒ି௝൫௪௧ାగ మ൯   (1) 

where A is the signal amplitude, 𝑆 =
஻

೎்
 is known as the chirp rate, 𝜔 =  2𝜋𝑓௖ is the lower chirp 

frequency, and B is the bandwidth of the signal [14], [17].  

Newer FMCW radar systems are compact, cost-effective, and energy-efficient, making them 

suitable for embedded applications [18]. FMCW radars typically come in two-dimensional (2D), 

like the IMST sr-1200e [19], and three-dimensional (3D) configurations [20]. A 2D FMCW radar 

typically includes one transmitter and two or more receivers, while a 3D FMCW radar system 

leverages multiple transmitters and receivers. Due to this configuration, 2D radar can provide 
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range and velocity information in a single plane. While 3D FMCW radar systems allow for the 

localization of objects in three-dimensional space, they also allow for more versatility in object 

tracking.  

2.1.1 Radar Signal Processing 

FMCW radar sensors usually transmit multiple chirp signals, as described by Eq. 1, sequentially 

in time. Objects in the radar’s environment will reflect the emitted signal and are later captured 

by one or more receivers. The round-trip delays the received reflections of the transmitted signal 

𝑡ௗ, as seen in Figure 1 and mixed with the original signal to produce a beat frequency 𝑓௕. Using 

signal processing techniques like the fast Fourier transform (FFT), high-resolution range data can 

be obtained from the received signals [17]. Taking the FFT converts the time-domain signal into 

the frequency domain (FD) so we can find amplitude data across a series of range bins. The 

frequency bandwidth of the radar will determine the range resolution of these bins, as it impacts 

the range bin size [14]. The range bin size can be calculated as seen in equation 2, where c is the 

speed of light, and B is the frequency bandwidth of the Radar. 

∆𝑅 =
௖

ଶ஻
      (2) 

2.1.2 Object Detection 

It is common to have noise and other various signal inconsistencies for the frequency domain 

data for the received signals. This can make it challenging to determine which portions of the 

signal represent a true “detection” representing an object in the radar’s view or other noise. To 

identify objects among the noise, one approach is using a Constant False Alarm Rate CFAR [21], 

[22], [23]. CFAR allows users to change the detection threshold based on the amount of noise 

and false detections expected.  

There are numerous CFAR algorithms, Figure 2 below is an overview diagram of Cell-Averaging 

CFAR (CA-CFAR). For CA-CFAR, a range of cells surrounding the Cell-Under-Test (CUT) are 

divided into training and guard cells to prevent signal increases from the CUT itself. The noised 

power is calculated at the average of the signal power of the training cells, and the detection 

threshold is determined by multiplying this noise estimate by a threshold factor. The algorithm 

then compares the signal in the CUT against this adaptive threshold, marking it as a detection if 

the signal exceeds the threshold. 
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Figure 2: Overview of the CA-CFAR processing algorithm with guard cells [23]. 

 

2.1.3 Object Angle Estimation and Velocity 

FMCW radar sensors can estimate the angle of arrival (AoA) for detected objects using the 

spatial separation between their different receivers [17]. Signals measured by two receivers (e.g., 

Rx1 and Rx2) exhibit a phase shift due to the distance between them. An example diagram of 

this can be seen in Figure 3. 

 

Figure 3: View angle estimation, 𝛼, based on FMCW radar with two receiver antennas (Rx1, Rx2) [19]. 

 

The detected object’s view angle 𝛼, is related to the phase shift 𝜑, by equation 3. Where c0 is the 

speed of light, fc is the central frequency of the transmitted signal and b is the distance between 

receivers. 

𝛼(𝜑) = sinିଵ ቀ
ఝ∙௖బ

ଶగ∙௙೎∙௕
ቁ     (3 [19]) 
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FMCW radars can also estimate a target's velocity using the Doppler shift of the reflected signal. 

The Doppler shift is analyzed by examining the phase difference of successive chirps, allowing 

for simultaneous range and velocity measurements [17].  This dual capability is crucial for 

distinguishing between stationary and moving objects.  

The Short-Time Fourier Transform (STFT) is an effective method for analyzing and interpreting 

movement in UAV radar data [24]. Segmenting the radar signal into short time intervals and 

applying the Fourier Transform to each segment allows for detecting movement patterns in the 

data, which can help distinguish moving objects, including the rotation of UAV rotor blades. A 

spectrogram can visualize the STFT output, a time-frequency plot that provides a clear visual of 

these behaviours [25]. 

2.2 Video Processing 

Video processing has become a highly effective tool for detecting UAVs [26], [27]. Image 

processing techniques can identify and classify objects by analyzing individual frames from 

video feeds, enabling real-time detection and tracking. Analyzing image frames has the benefit of 

performing more complex detections than you can do with Radar, including UAV payload 

detection [27] or detection of UAVs versus birds  [28]. Recent studies have also shown that UAV 

to-UAV detection and tracking can be fast and accurate even using hardware embedded in the 

UAV [29]. 

2.2.1 Object Detection and Classification 

Object detection is a computer vision technique that identifies and classifies objects within an 

image or video, labelling their locations using bounding boxes (BB) [7]. Numerous object 

detection ML models have been created that balance speed, accuracy and different techniques for 

object detection. Some notable models are Singe Shot MultiBox Detector (SSD) [30], 

EfficientDet [31] and  YOLO [7] among many others. This project will leverage and focus on the 

YOLO series of object detection models as they have become the leading solution for real-time 

image detection due to their speed and accuracy. One of YOLO's key advantages is its ability to 

perform quick object detection by segmenting input images into a grid and predicting bounding 

boxes and class probabilities simultaneously.  
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This design makes YOLO well-suited for deployment on embedded systems that may have 

limited computational power such as NVIDIA Jetson boards, which are optimized for edge AI 

applications. Ultralytics [32], an ML company that has recently committed to maintaining and 

releasing new versions of YOLO has published docker images that can be run directly on Nvidia 

Jetson devices, making it a great choice for edge applications, including UAV tracking solutions. 

2.2.2 Distance Estimation 

Beyond object detection, the bounding boxes produced by YOLO models provide a foundation 

for estimating object distance and orientation. For a monocular camera, simple distance 

estimation typically requires calibration of the software and camera, correlating the size and 

position of bounding boxes with real-world distances. Angle estimation can also be done by 

analyzing the relative positions and sizes of bounding boxes within the image frame. 

Recent research, including [33], and Dist-YOLO [34] have taken these distance estimation 

algorithms further by training ML algorithms to estimate distances based on image scaling and 

geometry using a monocular camera. These estimations are generally vital for UAV tracking and 

interception systems, which rely on accurate spatial data to predict trajectories and behaviours. 

2.3 Object Tracking 

Object tracking of moving targets is a complex task because of the constantly changing target 

position, speed and location. Often, sensors do not pick up all targets during each time interval. 

This can be caused by targets quickly entering and exiting the sensor's field of view, leading to 

intermittent detections. Sensors are also affected by noise and surrounding environmental issues, 

which can cause misidentifications of objects that may not be present. Multiple objects in the 

FOV further complicate tracking, as they can cross paths, hide behind one another, and change 

speed or direction, which need to be accounted for. These challenges necessitate robust tracking 

algorithms capable of maintaining accurate object trajectories over time.  

Object tracking can be achieved in video processing by analyzing individual frames and 

associating detected objects across consecutive frames. Models like YOLO (You Only Look 

Once) facilitate this process by detecting objects and providing bounding box coordinates in each 

frame [35]. By comparing these coordinates frame by frame, the system can track the movement 
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and changes of objects over time. This method relies on spatial information within the image to 

maintain object identities throughout the video sequence [36]. 

Conversely, radar-based object tracking utilizes distance (range) and angle measurements to 

estimate object positions. Instead of relying on visual data, radar systems detect objects based on 

their spatial coordinates relative to the sensor. This approach is particularly effective in 

conditions where visual data may be unreliable, such as low visibility or adverse weather. 

However, sophisticated algorithms are required to associate these measurements accurately with 

specific objects, especially in cluttered environments [37]. 

2.3.1 Object State Prediction 

A critical component of object tracking is the prediction of a target’s future state. The Kalman 

Filter [38] is an algorithm used for state prediction, providing estimates for a target’s position 

and velocity. It operates using a two-step approach for each time interval. First, it predicts the 

state of the target in the next time step using the system’s covariance and motion model. Then, 

once new data is received, the filter will refine those predictions based on the real data and 

provide another update in a consecutive loop. The algorithm assumes linearity and Gaussian 

noise, making it suitable for systems where these conditions hold. Figure 4 shows the two-step 

process, where 𝑝(𝑥௞|𝑥௞ିଵ) is the state transition probability given the state and time k -1 and 𝑧௞ 

is the sensor measurement as time k. 

 

Figure 4: Graphical representation of the predict-upgrade process of the Kalman filter [39]. 

 

For systems exhibiting non-linear behaviours, the Extended Kalman Filter (EKF) [40] extends 

the Kalman Filter to handle non-linearities by linearizing the system around the current estimate. 
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This adaptation allows the EKF to provide more accurate state estimations in complex scenarios, 

such as tracking objects with non-linear motion patterns. 

2.3.2 Track Estimation 

Effective object tracking necessitates advanced estimation techniques to accurately associate 

measurements with existing tracks and remove older tracks that have not been updated. It’s also 

important to manage uncertainties in multi-object environments, as objects could potentially be 

associated with different tracks. There are numerous methods that help achieve this with various 

benefits and drawbacks, three will be discussed below. 

One method that was evaluated in this project was the Joint Probabilistic Data Association 

(JPDA) method [41]. JPDA builds on the original Probabilistic Data Association (PDA) [42], 

which assigns probabilities to potential associations between measurements and existing tracks 

by considering the likelihood of each association. JDPA instead considers evaluates all possible 

associations jointly, offering a more robust solution for tracking multiple targets. This joint 

consideration ensures that overlapping or closely spaced objects can be accurately tracked 

without significant ambiguity. The JPDA approach was further developed to address the 

complexities of multi-target environments. 

Another method the Gaussian Mixture Probability Hypothesis Density (GMPHD) filter [37] 

models the target state as a mixture of Gaussian components, enabling efficient handling of 

multiple targets. It dynamically initiates new tracks and terminates obsolete ones, making it 

particularly effective in scenarios where objects frequently appear and disappear. By managing to 

track births and deaths probabilistically, GMPHD adeptly distinguishes true targets from false 

alarms, even in high-clutter environments. 

2.3.3 Stone Soup – Library for Track Estimation 

The Stone Soup software project [43] provides a comprehensive library for implementing object 

tracking systems, integrating advanced data association techniques into a flexible and extensible 

platform. Designed for researchers and developers, Stone Soup supports modular components 

that allow for easy customization and experimentation. Key features include support for a wide 

range of tracking filters, including Kalman, Extended Kalman, and Particle Filters; built-in 

implementations of advanced data association algorithms, such as PDA, JPDA, and GMPHD; 
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and tools for multi-sensor fusion and track evaluation, enabling the development of sophisticated 

tracking solutions. The flexibility of Stone Soup makes it an ideal choice for UAV tracking 

applications, where the ability to integrate radar and video data seamlessly is critical. By 

leveraging its pre-built modules and extensive documentation, users can focus on adapting the 

framework to their specific use case, reducing development time. 

2.3.4 Evaluation of Object Tracking 

Evaluating the accuracy of object tracking is an important part of tracking algorithms to see how 

accurate they are and how they compare against each other. There are two sets of metrics that are 

often used for performance comparisons between object tracking algorithms, the CLEAR 

multiple object tracking (MOT) [44] metrics and the single integrated air picture (SIAP) [45] 

metrics.  

The CLEAR MOT metrics are commonly used to evaluate UAV object-tracking algorithm and 

will be used in this report [46], [47] [48]. CLEAR MOT consists of two common metrics that are 

used for evaluation: multiple object tracking accuracy (MOTA) and multiple object tracking 

provision (MOTP). MOTA measures the overall accuracy of a tracking system by accounting for 

three primary factors: missed detections, false positives, and mismatches. This can be seen in 

equation 4 below. Misses occur when a ground truth object is present, but the system fails to 

associate the detection to a track because it either was not picked up by sensors or was identified 

as too far away to match the correct track. False positives, on the other hand, occur when the 

tracking algorithm identifies an object through a series of detections that do not correspond to 

any ground truth object, often due to noise or incorrect associations [46]. The MOTP evaluate the 

precision of the tracker by calculating the average distance between predicted positions and real 

positions for each of the tracked objects. Lower values indicate better precision. Equation 5 

below shows a general formula for calculating MOTP. 

𝑀𝑂𝑇𝐴 = 1 −
ெ௜௦௦௘௦ାி௔௟௦௘ ௉௢௦௜௧௜௩௘௦ାூ஽ ௌ௪௜௧௖௛௘௦

்௢௧௔௟ ீ௥௢௨௡ௗ ்௥௨௧  ை௕௝௘௖௧௦
     (4) 

𝑀𝑂𝑇𝑃 =  
∑ ஽௜௦௧௔௡௖௘(௜,௧)೔,೟

ே௨௠௕௘௥ ௢௙ ெ௔௧௖௛
   (5) 
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2.4 Sensor Synchronization for Real-Time Processing 

The synchronization of sensors is a critical component of real-time object detection and tracking 

algorithms. Any misalignment can lead to errors in associating detections across sensors and 

reduce system performance [49]. However, it can be difficult to synchronize the outputs perfectly 

when dealing with multiple sensors that may operate with different sampling rates or generate 

data asynchronously. There are a few common techniques that can be used for sensor 

synchronization including hardware-level synchronization, dynamic time-warping [50], 

resampling and event-based synchronization using queues or event buses. This report will mainly 

focus on event-based synchronization, but we’ll also cover resampling as it could have been used 

as well.  

One common technique for handling differences in sampling rates between sensors is 

resampling [51]. For instance, radar systems might output data at a fixed rate, such as every 0.25 

seconds, while cameras may produce frames at irregular intervals or higher frame rates. 

Resampling involves interpolating or down-sampling the higher-frequency data to match the 

lower-frequency sensor or vice versa. This creates a uniform temporal framework, ensuring that 

data points from both sensors are comparable and aligned. 

Event-based synchronization can be achieved by having each data entry from the asynchronous 

sensors timestamped upon collection or arrival in the queue [52] [53], [54] [55], [56]. The main 

system then compares timestamps associated with events in the queue for a predefined temporal 

window. If a pair of events occurs within that temporal window, both are associated together  

[55]. This synchronizes the data between 2 different sensors with a maximum offset between 

sensor data of the defined temporal window length. The event-based strategies allow for 

buffering detections to wait for new incoming data from sensors that may be slower or simply 

forward along one of many sensors' data if the temporal window is completed. The event-based 

synchronization can also use more advanced techniques that may involve averaging 

measurement if multiple occur with a single temporal window [56]. 
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2.5 Software 

2.5.1 Containerized Applications 

Containerized applications benefit from dependency isolation for their required libraries and 

folders while still sharing the same kernel with other containers in the group [57]. The container 

engine is used to spin up the containers and provide them with CPU and RAM from the base 

kernel they are on. The significant benefit is the dependency isolation between applications while 

only requiring one operating system for many applications. An overview of how containers use 

the underlying host kernel/OS and infrastructure can be seen in Figure 5 below. 

 

Figure 5: Overview of how containers use the underlying infrastructure [58]. 

 

Another key advantage of containerized applications is their portability, which stems from their 

ability to package an application along with all its dependencies into a single, self-contained unit 

[57]. This makes running a container across different operating systems easy, given the kernel 

has a container engine like docker installed. This is particularly important for running 

applications that need access to specialized hardware like GPUs, or other infrastructure setups.  

 

2.5.2 Docker Images 

A Docker image serves as a template for creating one or more containers [59]. At its core, it’s a 

rooted filesystem that includes all the file dependencies required for the applications that will run 

inside the containers. These are often referred to as base images, which your application software 

is added on top of. This means that when you launch a container from a Docker image, 
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everything the application needs to operate—libraries, binaries, and other runtime 

dependencies—is already baked into the image. Docker makes the process of running containers 

on different operating systems easier using the base image templates as it supports the main 

operating systems like Linux or Windows as well as other variants like JetPack 4, 5 and 6, which 

are used on Nvidia Jeston devices [60].  
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3 Methods 

3.1 System Architecture 

The system architecture for this project is designed for modularity, enabling easy replacement of 

its different components without requiring changes to the others. It is composed of 4 main 

components: radar, video, data synchronization and object tracking modules. All these modules 

are currently running in a single container and can interact with the operating system’s console 

and storage using a container runtime. Figure 6 illustrates the architecture and different modules 

of the system.  

 

Figure 6: System architecture of the containerized object tracking software running on a computer with a Radar Kit 
and Camera connected to it. 

 

This system architecture allows for both the radar module and the video module to be run 

asynchronously, collect data at different rates, and eventually synchronize their outputs to feed 

into the object-tracking algorithm. The internals of each module will be detailed further in a 

future section. The synchronization layer also enables additional sensors to be added in the future 

if required since their outputs could also be synchronized within the same time interval.   

 An important consideration of the system design is storing the raw data received from the radar 

and camera sensors for later reproducibility. Radar data is saved upon receipt, while both raw and 

processed video frames, including bounding box annotations, are stored for later reprocessing as 

well. The saved image frames can also be compiled into videos for future analysis. This allows 
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for tests to be done and later re-analyzed, and the raw data can be processed with potentially 

different algorithms to improve the results later.  

Since this is designed as a containerized application, it can work on a local computer or 

embedded hardware if a container engine can be installed onto the operating system. This 

includes systems like Windows, Linux or the Nvidia Jetson Orin Boards. The only requirement 

will be the device has sufficient hardware capabilities to prevent bottlenecks in one of the 

applications that may require a GPU to keep up with running the ML model processing in real-

time.  

3.1.1 Running On Different Environments 

Ultralytics, a primary maintainer of YOLO, provides pre-built Docker images specifically 

designed for GPU-enabled containers on different operating systems. These images include all 

necessary dependencies and are available for various Linux distributions and embedded 

platforms like Jetson JetPack5 and Jetson JetPack6 [61]. This project adds additional software on 

top of those base images, such as Python packages for Stone Soup [43] and other required for 

radar processing and object tracking. Using these base images simplifies the deployment process 

across different hardware and operating systems. Figure 7 below are the Dockerfiles to create 

both the Linux and JetPack 5 images. The Dockerfiles are identical to the base image that is used 

from Ultralytics. Using this approach, it becomes very simple to migrate any operating system 

that Ultralytics will offer in the future as new software options like JetPack6 or others are 

required. 

 

Figure 7: Dockerfile for creating a docker image that can be run on Linux (left) and Jetson-Jetpack5 (right) 
operating systems. They have identical steps, aside from swapping the Ultralytics base image. 
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To streamline the image-building process and software availability, GitHub Actions [62] were 

implemented to automate the creation of Docker images. These actions build both Linux and 

JetPack5-compatible images on demand whenever changes are pushed to the GIT repository. 

[63]. The images are then published to Dockerhub [64] so they are available to any system that 

has internet access. This allows for building default Linux and ARM-specific images that can be 

pulled onto the corresponding operating systems and quickly run without ever directly 

interacting with the code. This automation simplifies getting new code, or algorithms onto all 

systems. 

3.1.2 Container Integration With Operating System 

There are small differences between running the containerized application based on the operating 

system. This is caused by the different OS architectures and how GPUs are integrated. Jetson 

boards required the “—runtime=nvidia” flag, as seen in Figure 8, because of their integration of 

GPU and ARM-based architecture. Whereas Linux serves discrete GPUs that can use the “—

gpu” flag provided by the Nvidia toolkit to access and run workloads on the GPU. Aside from 

the slightly different runtime flags, the containers running the software function the same.  

 

Figure 8: Docker run commands for running containers with GPU access for Linux (top) and JetPack 5 (bottom). 
Both containers also mount a container volume to store the processed data directly on the OS. 

 

Another aspect of container integration is accessing the sensors. The sensors for all experiments 

were either directly attached to the operating system, so they could be accessed by the container, 

or available through the. It’s also required to write output files directly to the host operating 

system for later analysis. This can be done by mounting an output container volume from the 

container to a folder on the host OS as shown in Figure 8. Since each trial run might involve 

different parameters or settings, it's essential to preserve the results for reproducibility.  This 

ensures all generated data, whether from radar, video processing, or object tracking, is accessible 

outside the container and can be used for future offline evaluation and testing if desired.  
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3.1.3 Hardware 

For real-time software testing, the Nvidia Jetson Orin 16GB was used for initial testing to ensure 

the software works on embedded hardware. A full breakdown of the Nvidia Jetson Orin 16GB 

can be seen in Table 1. For testing, the FMCW Radar was connected to over the local network, 

and the USB webcam was directly plugged into the Jetson board and made available to the 

container to stream video. 

Table 1: Main technical specifications of the Jetson Orin Nx 16GB board used for initial real-time data collection 
[65]. This was not used for object-tracking evaluations, that will be future work.   

Computer Component Description 

CPU 8-core Arm® Cortex®-A78AE v8.2 64-bit 2MB L2 + 4MB L3 

Memory 16GB 128-bit LPDDR5   102.4GB/s 

Storage 128GB NVMe 

GPU 1024-core NVIDIA Ampere architecture GPU with 32 Tensor Cores 

 

3.2 Software Application Design 

3.2.1 Sensor Data Capture and Processing 

The software application for this project is entirely Python-based and designed to be executed 

from the command-line interface (CLI) of a container. An overview of the application structure is 

shown in Figure 9 below. The application has various configuration options through the CLI or 

through mounted configuration files to tune aspects of the application, including CFAR params, 

synchronization windows, IP addresses for the radar and more. The configuration also includes 

options for disabling the image or radar processing loop for individual testing of one or the other 

if desired. As mentioned in the system architecture, the design is highly modular, allowing 

different components to be updated or replaced without impacting the rest of the system. 
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Figure 9: Overview of the containerized tracking application. It contains 3 main parts: the tracking program is 
responsible for starting data collection and data processing in separate threads and monitoring the queue of 
detections to find and report current tracks. 

 

The application is divided into 3 main processes: the radar processing loop, the image processing 

loop, and the main tracking process which contains the synchronization and tracking loop. The 

main process, “Tracking.py” in Figure 9, serves as the entry point and is responsible for initiating 

the radar and image processing, which run in separate asynchronous Python processes. These 

loops handle sensor data capture and independently process the raw data to detect objects and 

publish them to the event data queue. Both the radar and video processing loops also save both 

raw sensor data and processing results to the local computer. This enables future offline analysis 

to reproduce results or try a different algorithm on the data that was captured during the real-time 

process. 

While the radar and image processing loops run, the main process continuously monitors the data 

queue for incoming detections. The radar and image processing loops add details to the queue, 

including the detection source, the x and y coordinates of detected objects, and additional object 

classification details from YOLO for video processing. The main thread then gathers radar and 

image processing detections during each synchronization period—if data from both sources is 

available. This aligns the incoming detections from the two sensors. More details about this 

synchronization will be given in the next section. After synchronization, the tracking system 

performs data association and object tracking. The software will determine if new detections 

below with new or existing tracks, as well as remove old tracks if needed. This approach blends 

the multiple sensor inputs and simply treats them all as detections with a plane.  
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3.2.2 Data Synchronization 

The software uses a single shared queue to manage and synchronize data from both the radar and 

video processes, implementing an event base architecture. This queue simplifies the architecture 

while ensuring the asynchronous sensor data can be processed with a defined maximum time 

difference defined by the synchronization time window. The overall workflow can be seen in 

Figure 10. The process starts with the video or radar processing, capturing their sensor data, 

labelling it on a collection with a timestamp generated from the Python program, and processing 

it. After the processing is complete and detections are potentially found, the processes will add it 

to the detect_queue. 

 

Figure 10: Flow chart diagram of the main processing loop that synchronizes asynchronous sensor data that is 
pushed to the detect_queue based on the time of the detections. 

 

The Main Processing Loop acts as the orchestrator, continuously monitoring the detect_queue, 

for incoming detections. During each synchronization period, the timestamps of detections in the 

queue to check if they fall within the defined synchronization window. If the detection is within 
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this window, it is passed to the object tracking algorithm to associate it with an existing track or 

create new ones as needed. This synchronization approach means sensor data is aligned but can 

result in a maximum time difference of the sync window’s time between associated detections. If 

there are multiple batches of detections within a sync window, the current implementation will 

use the ones with the most recent timestamp to the synchronization window for object tracking. 

However, in the future multiple sets of detection could be normalized if they occur within the 

same sync window.  

 Any detections outside the synchronization period are buffered for the next processing cycle, 

ensuring no data is lost while maintaining temporal alignment. If any detection in the queue has a 

timestamp from before the window, they are discarded.  

By using the timestamp of when data is collected, as created by the python code, it acts as a 

unified reference, and the system avoids potential issues such as clock drift or misalignment 

between sensors. This is a significant advantage of having a single Python application, where 

time association is consistent and centrally managed. The queue-based architecture also allows 

for configurable synchronization periods based on the sensor's uses and real-time constraints. 

Overall, by combining modular sensor processing with synchronization and buffering through 

the detection queue, the system enhances detection reliability and efficiency in real-time 

environments. 

3.3 Radar Processing 

3.3.1 Radar Data Collection 

The radar data collection was performed by connecting to the radar using the development kit 

DK-sR-1200e [19]. The developer kit provides easy integration with the FMCW radar system for 

configuration and data collection. The developer kit was used for all experiments to retrieve real-

time time-domain (TD) data generated from the FMCW radar system based on the transmitted 

and received signals. This data is used downstream in subsequent processing to identify objects 

in the radar’s FOV.  
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3.3.2 Radar Data Processing 

The radar data processing pipeline begins by applying a hamming window to the TD data 

collected from the radar. This is done using the NumPy hamming Python library [66]. The 

hamming window, applied to all 1024 collected data samples, helps reduce the spectral leakage 

before applying the FFT, improving the accuracy of range and velocity measurements. After the 

hamming window, the FFT calculation is done on the TD data, converting it into the FD. This 

conversion enables the identification of range bins corresponding to detected objects. The FFT 

calculation is done using the NumPy FFT Python library [67]. 

After converting to the FD, a CA-CFAR algorithm is used to identify peaks that indicate the 

presence of objects. CA-CFAR detection is applied across all 512 range bins in each of the 

radar's FD signals from receivers 1 and 2. The algorithm currently assumes any detections made 

in both receivers correspond to the same object and, therefore, can be treated as a single 

detection for that range bin [68].  If only one receiver detects an object while the other does not, 

it is assumed to be a real object rather than noise, and the detection is sent to the tracking 

algorithm. The best CA-CFAR parameters do vary per experiment and the conditions, but for this 

report, the CA-CFAR parameters used for all testing are defined in Table 2 below. 

Table 2: CA-CFAR parameters used for all signal processing in the experiments. 

CA-CFAR Parameter Value 

Threshold 4 

Guard Cells 2 

Reference Cells 5 

 

After using CA-CFAR to identify object detections, there were false detections found within the 

FD signal. This could have been reflections of nearby objects or just noise in the signal 

measurement. To improve processing, a step to compute the STFT of recent samples was added 

to the processing. The STFT helps identify regions in the signal that indicate movement. This 

helps reduce any false detections by eliminating regions where the STFT identifies no 

movement. The STFT was calculated with the SciPy python library, allowing the system to 

analyze the power level of specific frequencies over time [69]. Detected frequencies with high-

power regions, such as the ~0.6 kHz frequency in Figure 11, were extracted by applying CA-



 

22 
 

CFAR to the average power spectrum of the STFT output, isolating high-power regions 

corresponding to movement. Based on the radar's parameters, these frequencies were then 

converted back to the correct distance and range bin using the corresponding frequency. 

 

Figure 11: Example output of the frequency versus time graph that is created after taking the SFTF. This graph 
shows a higher power region at ~-0.6 kHz indicating movement over the entire time interval.  

 

The STFT is often applied across the entire signal to identify movement, however given the real-

time nature of this design the STFT will be applied using a windowed approach. A visual of the 

sliding window approach can be seen in Figure 12. This means STFT will be calculated using the 

most recent n samples of FD data. For objects where there is minimal movement within the n 

samples, it is easy to estimate the range bin where the distance occurs. For these experiments, a 

window size of 6 samples was selected, as it was sufficient to see specific frequency regions with 

increased power that identified moving objects. The current and initial implementation only 

looks for movement using the STFT, but eventually, it could be improved by looking for micro-

doppler signatures.  

 

Figure 12: Sliding window technique used against the Radar data to continuously calculate the STFT across a 
window of n samples [70]. 
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After identifying the object detections for specific range bins using the CA-CFAR algorithm and 

spectrogram analysis, the AoA is estimated using the original FFT results. We can map detections 

onto the polar or cartesian planes for object tracking using the range bin for objects and the 

angle. 

3.3.3 Radar Experimental Setup with Hovering UAV 

To test the radar processing pipeline, experiments were conducted using the stationary 24 GHz 

FMCW radar [19], using the radar settings found in Table 3. All object detection sets were done  

using a DJI Mini 3 Drone [71] hovering at predetermined distances above it. The radar faced the 

sky, capturing reflections from the hovering UAV. The experimental setup can be seen in Figure 

13 below. 

 

Figure 13: Experiment with the DJI mini-UAV hovering about the FMCW Radar at distance d for various 
experiments. This image shows the DJI mini 1.3 meters from the radar. 

Table 3: FMCW Radar configuration for all test results. 

Setting Value (Units) 

Start-Frequency 24000 (Mhz) 

Stop-Frequency 24750 (Mhz) 

Ramp Time 3 (ms) 

Number of Samples 1024 

Range Bin Size 199.939 (mm) 

Bin Size 339 (Hz) 

Zero Pad Factor 1 

Normalization  1 
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Tests were conducted with the DJI Mini UAV hovering above the radar at various distances, d of: 

1.3m, 5m, 15m, 20m, and 29m. These tests provide a baseline for UAV detection using the radar 

processing algorithm for a stationary object. 

3.4 Video Processing 

The video processing component for this project is designed as a preliminary example to show 

how video-based object detection can be integrated into this system. The current implementation 

captures raw video frames from a monocular camera and then processes them using a GPU-

accelerated ML model, YOLOv8, to perform object detection and estimate the object’s location. 

These detections will then be added to the detection queue and passed for object tracking. The 

following sections will cover the initial implementation of YOLOv8 and object location 

estimation [72]. 

3.4.1 Object Detection from Video 

The object detection algorithm can connect to a configurable video source, including online 

video streams or locally attached cameras. The current algorithm captures image frames from the 

video using OpenCV [73] at a predefined interval. This enables saving each raw image for later 

processing and analysis of the video data. Each frame is processed independently using the 

YOLOv8 object detection model [74]. It performs a frame-by-frame image analysis to identify 

objects and their corresponding BB. The BB is used to estimate the distance and angular position 

of each detected object in the frame. Details on the distance and angular position calculations 

will be discussed further in the next section. Once the estimated position of each object is found, 

the detected object's position is sent to the data queue for use by the object tracking algorithm. A 

code snippet for the overall video processing algorithm can be seen in Figure 14 below.  
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Figure 14: Code snippet from the primary portion of the video processing algorithm. Using the configured video 
source, it runs the YOLOv8 model to find bounding boxes, calls a function to get the relevant detection details and 
submits it to the data queue for tracking.   

While YOLOv8 offers built-in tracking algorithms that extend the frame-by-frame analysis into 

temporal object tracking, they were not used in this implementation. Incorporating YOLO’s 

built-in tracking capabilities could be explored in the future. 

3.4.2 Object Distance and Angle Estimation 

This project's method for estimating object distance and angle relies on the BB geometry derived 

from the object detection algorithm, combined with the camera’s specifications. Using a 

monocular camera, this technique provides a way to localize objects in 2D space without 

requiring additional sensors or pose estimation of the object.  

The classified object’s distance is estimated based on the BB width relative to the image width, 

calculated using Equation 6. The width of the bounding box, in pixels, is normalized by the 

image width to provide a fraction that serves as an inverse indicator of distance. We can find a 

calibration coefficient CBB to relate the bounding box to the actual distance by using the 

relationship between object size in the image and physical distances. This coefficient can be 

calibrated before running object tracking using a known object at a known distance. Once you 

have the coefficient, it can be used to calculate the known object’s distance in a new image frame 

using Equation 7 – where the distance is unknown.  

𝐵𝐵ௐ௜ௗ௧௛ூ௡௉௜௫ =
௕௢௧௧௢ ೝ೔೒೓೟ೣି௧௢௣೗೐೑೟ೣାଵ

ூ௠௔௚௘ௐ௜ௗ௧
       (6) 
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𝐷 = 𝐶஻஻
ଵ

ಳಳೈ೔೏೟೓಺೙ು೔ೣ
ೋ೚೚೘ಷೌ೎೟೚ೝ

      (7) 

A default calibrated coefficient can be used for distance estimation of all objects. However, the 

estimated distance can vary depending on the disparity between the detected objects' shapes. 

Instead, the coefficient can be calibrated for several different objects. Since YOLOv8 will 

classify the object, it’s possible to have a coefficient for each object to determine the distance 

effectively. For this project, the coefficient was only calculated for the UAV and Human, but 

others would need to be calculated for accurate distance estimation. 

Angular estimation involves calculating the bounding box's horizontal and vertical center 

positions, normalized to the image width and height. Equations 8 and 9 can be used to determine 

the BB’s centroid in the image, which can then be used to calculate the azimuth, θ, and elevation, 

ϕ, angles using Equations 11 and 12. The angles calculated are scaled using the camera's 

horizontal and vertical FOV. A camera’s horizontal FOV is typically part of the specification, and 

the vertical FOV can be calculated using Equation 10. The centroid’s displacement from the 

image center provides the angular offsets that describe the object’s position in the camera’s frame 

of reference. 

𝐵𝐵ு௢௥஼௘௡௧௘௥ூ௡௉௜௫ =
௧௢௣೗೐೑೟ೣା௕௢௧௧ ೝ೔೒೓೟ೣ

ଶ∙ூ௠௔௚௘ௐ௜ௗ௧
     (8) 

𝐵𝐵௏௘௥௧஼௘௡௧௘௥ூ௡௉௜௫ =
௧௢௣೗೐೑೟೤ା௕௢௧௧௢௠ೝ೔೒೓೟೤

ଶ∙ூ௠௔௚௘ு௘௜௚௛௧
    (9) 

𝐹𝑂𝑉௩௘௥௧ = 2 ∙ 𝑡𝑎𝑛ିଵ ቀ𝑡𝑎𝑛 ቀ
ிை௏೓೚ೝ

ଶ
ቁ ∙

ூ௠௔௚௘ு௘௜௚௛

ூ௠௔௚௘ௐ௜ௗ௧௛
ቁ ∙

ଵ

஺௦௣௘௖௧ோ௔௧௜௢
    (10) 

 

(11) 

 

(12) 

 

This approach assumes a simple monocular camera setup, where the bounding boxes directly 

represent the object. This algorithm does not account for the object’s pose or potential rotation. 

The algorithm prioritizes simplicity for an initial real-time object-tracking algorithm for video 



 

27 
 

processing that can be integrated with other sensor data. However, pre-calibration is required to 

find the CBB for an object you want to track. Future iterations of the system could incorporate 

more advanced techniques. 

3.4.3 Distance Estimation Experiment 

Some simple initial distance estimation experiments were done to verify the above algorithm was 

feasible. A connected camera, specifically an Anker PowerConf C200 Webcam that collects data 

at 1920(H)x1080(V)@60fps, was used to test the distance and angle estimation of various 

objects that were calibrated beforehand. The main experiment was moving a chair, with a 

bottle/cup on top of it, at different distances throughout the room to verify it was able to get the 

distance correct for both images based on the object’s BB size. 

3.5 Object Tracking 

The object tracking and data association implementation for this project utilizes the Python 

library Stone Soup, which contains several state estimation and tracking algorithms [43]. Stone 

Soup is typically designed for offline analysis using pre-recorded data. However, its algorithms 

were modified for real-time analysis as part of this project.  

3.5.1 Picking an Object Tracking Method 

Stone Soup provides several object-tracking algorithms, including JPDA, PDA, and GMPHD, all 

with their strengths. To select the most suitable, experiments were conducted to evaluate the real-

time processing and tracking performance. The metrics used for comparison included processing 

time and accuracy, as the memory requirements with the track trimming discussed in the next 

section make their impact minimal.  

The tracking performance was evaluated using two main experiments comparing Stone Soup’s 

implementation of PDA, JPDA, and GMPHD—the first test simulated 1,000 frames with ten 

actual tracks per frame. The tracks were spread within 100-meter spacing, using a cluster rate of 

3.0 and a 70% probability of true detections from a sensor. Metrics such as processing time and 

accuracy were analyzed using the CLEAR MOT metrics. The second test focused on more 

straightforward conditions with only one detection per frame, examining how efficiently the 

detections handle noise and a low number of objects. Once again, the single track was spread 
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within 100-meter spacing, using a cluster rate of 3.0 and a 70% probability of true detections 

from a sensor. Each test was done 5 times to reduce any inconsistencies. These tests highlighted 

trade-offs between the algorithms, which will be discussed in the results section. 

3.5.2 Modifying Stone Soup for Real-Time 

For most examples, Stone Soup is typically used for offline evaluation, where all data is 

preloaded and processed in a single loop. Several main modifications were required to make it 

work for real-time tracking: handling detections on the fly in near real-time, reducing memory 

usage, and improving responsiveness. 

In this project, each synchronization period from the detection queue is treated as a "time frame," 

and the detections from that period are sent to Stone Soup incrementally for association with new 

or existing tracks. This approach removes the need to preload the dataset in advance and 

instantly lets us dynamically associate incoming detection. 

To manage memory efficiently, tracks that haven’t been updated within a predefined number of 

synchronization periods are pruned from the system. These tracks are considered inactive and no 

longer contribute to the tracking process, so removing them reduces memory usage and speeds 

up processing. Additionally, every few synchronization periods, the system checks to see which 

tracks have been updated recently. Tracks that are still active are reported to the console, giving 

the user real-time feedback on the system's performance and the number of objects being 

tracked. Any tracks with more than 50 data points also have their state trimmed to keep memory 

requirements low during this period.  With both modifications, Stone Soup can handle incoming 

real-time data, perform tracking and keep memory requirements small. 

  



 

29 
 

4 Results 

4.1 Real-Time Processing 

The system can achieve near real-time processing by pulling data from a queue for each 

synchronization window. The performance of this software is highly dependent on the underlying 

hardware, particularly the CPU and GPU used to run the ML models. Initial testing was 

conducted on an Nvidia Jetson Orin 16GB over a 1-minute interval, with the results summarized 

in Figure 13. The radar data showed an average collection interval of approximately 0.1 seconds, 

with further processing bringing the total time to around 0.15 seconds before it was added to the 

queue. Video processing, was slightly faster, averaging 0.113 seconds per frame. A 

synchronization window of 0.17 seconds will be used for all future processing based on these 

results, ensuring at least one detection from both radar and video processing during each interval. 

This will ensure that the tracks have approximately five detection points per second from the 

sensors. This setup highlights the system’s ability to operate within real-time constraints while 

maintaining synchronized sensor inputs. 

Table 4: Average processing time to get detections from the video and radar on the Orin Board, including processing. 

Processing Type Average Time (s) 

Video Processing (with YOLOv8) 0.113 

Radar Processing (with IMST FMCW Radar)  0.154 

 

Since the object tracking algorithm records real-time raw sensor data for offline playback, 

including radar data and image frames from the video, it’s important to consider how much 

storage is required on the machine running it. If this process is intended to run for extended 

periods on embedded hardware. The total amount of data collected and saved during a 1-minute 

trial is summarized in Table 5. The overall data size per minute is most sensitive to the size of the 

images collected in each sample. The smaller the images, the less storage is used; compression 

could also be used to reduce storage size. 
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Table 5: Approximate data creation for a 1-minute trial, broken down into the video, radar and object tracking 
portions. This is an approximation when saving 1280x720-sized images from the camera at each interval. 

Processing Type Data Size 

Video Processing (Raw + Processed Images) ~155 MB 

Radar Processing ~12 MB 

Object Tracking ~0.1 MB 

Total ~167.1 MB 

 

4.2 Radar Processing 

4.2.1 Hovering UAV Detections 

For the initial analysis of this software, pre-recorded radar data was used as input to the radar 

processing pipeline, which has been discussed thus far. The pre-recorded data was used as an 

input source instead of capturing data directly from the real radar. The radar data for hovering 

UAVs was captured at various distances as previously described; all figures in this section will 

correspond to the trial when the UAV was hovered 29 meters above the radar.  

The first step of the radar processing pipeline is to calculate CA-CFAR on the incoming signal 

and look for peaks in the signal corresponding to potential object detections. A sample of the 

CA-CFAR on the Rx1 and Rx1 signals for one single time frame can be seen in Figure 15. This 

graph shows the true detection at 29m and some noise detections at ~1m and ~85m. 

 

Figure 15: A plot of the signal versus power for the Rx1 and Rx2 signals with lines showing their CA-CFAR 
threshold is required to be considered a peak. The plot shows a true detection at 29m and noise that resulted in 
detections at ~1m and ~85m.  
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Looking at a single frame from the signal analysis, there were more detections from noise than 

from the specific objects. To improve the results, the algorithm looks for higher power regions in 

the signal frequency over time. Plots of the signal frequency and the power of it over the entire 

trial can be seen in Figure 16. A similar plot, but only using a window of 6 samples, so ~1 second 

can be seen in Figure 17.  

 

Figure 16: Frequency versus time plot, with the power levels shown. The plot shows higher power at 29m, 
indicating motion over the entire 1.3-minute trial.   

 

Figure 17: Frequency versus time plot for six samples, with the power levels shown. The plot shows higher power at 
29m, indicating there was motion at that distance over the six samples.  

 

By combining the original detections from the CA-CFAR processing of the FD signal with the 

identified high-power regions from the STFT output, we can effectively reduce false detections 

before sending them to track. Figure 18 shows the improvement in detection performance, the 

reduction in false detections, and overall detection performance improvement on a cartesian plot.  
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Figure 18: Plot of the radar detections for a single time interval without checking for movement, i.e. just using the 
CA-CFAR on the FD signal (left), and a plot of detections after only including detections that also had movement 
identified with STFT.  

4.3 Object Tracking 

4.3.1 Initial Algorithm Testing 

As described in the methodology, it was important to test different tracking options in Stone 

Soup to evaluate their performance and their balance between speed and accuracy. The 

performance of the algorithms was analyzed in terms of their average time to associate 

detections, Multiple Object Tracking Precision (MOTP), and Multiple Object Tracking Accuracy 

(MOTA). 

The first set of results, shown in Table 6, compares the performance of PDA, JPDA, and 

GMPHD algorithms over 1,000-time intervals with one true object to tracking and a clutter rate 

of 3.0. In this scenario, JPDA was the most accurate, achieving the highest MOTA and the best 

MOTP while requiring less processing time than GMPHD. GMPHD also performed well, but on 

the single object detection had the slowest processing speed. 
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Table 6: Performance testing results of PDA, JPDA and GMPHD over 1000-time intervals when there is one “true” 
object to track for each interval with a clutter rate of 3.0.  

Algorithm Average Time to Associate Detections(s) MOTP (m) MOTA (%) 

PDA 8.5 3.5 94.1 

JPDA 10 2.9 96.8 

GMPHD 10.2 3.2 95.3 

 

In a more complex trial with ten true tracks and a clutter rate of 3.0, as summarized in Table 7, 

the results highlight the trade-offs between the algorithms. JPDA remained the most accurate in 

this scenario with a MOTA of 92.3% and a MOTP of 3.1 meters. However, its processing time 

increased significantly due to the higher number of tracks and the need to evaluate probabilities 

across all detections. PDA struggled in this high-clutter, multi-object environment, though it 

maintained the fastest processing time at 21.10 seconds. GMPHD found a good middle ground, 

with a good accuracy of 91.8% and a processing time of 25.93 seconds between the 2. 

Table 7: Performance testing results of PDA, JPDA and GMPHD over 1000-time intervals when there are ten “true” 
objects to track for each interval with a clutter rate of 3.0.  

Algorithm Average Time to Associate Detections(s) MOTP (m) MOTA (%) 

PDA 21.10 4.2 84.2 

JPDA 31.13 3.1 92.3 

GMPHD 25.93 3.3 91.8 

 

Overall JPDA provided the highest accuracy in both single- and multi-object scenarios but at the 

cost of significantly higher processing times, particularly in complex environments. PDA 

performed the fastest but struggled with clusters. GMPHD performed well overall, balancing 

accuracy and processing time, making it a good fit for near real-time tracking requirements. 

Based on the results, GMPHD was selected for the remaining object-tracking experiments done 

as part of this project.  

 

4.3.2 Results for Hovering UAV Tracking 

The experimental results for the UAV hovering above the radar, as defined in Section 3.3.3, were 

processed through the radar pipeline and tracked using the GMPHD algorithm in Stone Stoup. 
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Figure 19 shows a single time frame of the detections, showing the UAV detections found 

through CA-CFAR and the STFT processing. The figure also shows the uncertainty of the 

detection made with the GMPHD algorithm, which appears to be about 1.5 meters. That 

uncertainty did improve further into the processing as the track was established for longer. After 

processing the entire dataset, tracking results were evaluated using CLEAR MOT metrics, with 

ground truth provided by the UAV’s GPS controller, which recorded the UAV hovering at 29 

meters throughout the experiment. A detection was considered accurate if it was within two 

range bins, ~0.4 meters, of the ground truth. 

 

Figure 19: Sample track shown from the Stone Soup UI, showing the individual detections, the track points and 
track uncertainty for a specific time.  

 

The metrics are summarized in Table 8, showing the tracking accuracy for the different trials 

where the UAV was hovering at different vertical distances. At shorter distances, the radar 

processing struggled to consistently identify detections for the UAV, so the tracking algorithm 

only achieved a MOTA of 60%. At 15 meters, the MOTA was also lower at 66.7% due to 

consistent false detections and a track being established from those detections for approximately 

one-third of the trial. Overall, for mid to long ranges, such as 5 meters and 20 meters, the system 

performed well, with MOTA values of 100% and 99%, respectively. At the maximum range of 

29 meters, the MOTA was 65.4%, but this can be partially attributed to the choice of using only 

two range bins for “true” detections. If the true detection threshold was with three range bins, 

~0.6m, the MOTA would have been 94% for 29m.  
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Table 8: CLEAR MOT metrics, for the gathered data for a UAV hovering above the radar. As well as the maximum 
deviation from the true object distance. The metrics consider a true positive to be within ~0.4m of the known 
distance to the object. This is approximately two range bins. 

Distance (m) MOTP (m) MOTA (%) Maximum Deviation (m) 

1.3 0.07 60 -0.1 

5 0.133 100 0.2 

15 0.05 66.7 0.1 

20 0.148 99 0.3 

29 0.522 65.4 0.7 

 

The results also highlight that the MOTP for most of the trials is good, where the distance of the 

tracks is, on average, always within 5% of the recorded GPS distance value. The maximum 

deviation throughout the trials also shows any associated tracks are at most 8% off their true 

value. Overall, the results are somewhat promising but also point to areas for improvement. 

Additional processing in the radar processing and association phase, including adjustments to 

thresholds, could significantly improve tracking performance, particularly at close and long 

distances. 

4.4 Video Processing 

The results for video processing are preliminary and should be seen as an initial proof of 

concept. At the time of writing this, the official testing of a camera tracking UAVs or a camera on 

a UAV tracking other objects has not been completed. However, some sample testing was 

conducted to demonstrate the video processing algorithm’s capabilities. Using calibrated 

bounding bound coefficients, CBB, for a chair and cup, as shown in Figure 20, it was possible to 

estimate the object's positions and angles at various distances. 
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Figure 20: Picture of a video frame with the YOLOv8 bounding boxes, annotated with the calculated distance after 
calibrating the coefficient for the chair and cup. The measured distance for both was approximately 1.85 m.  

 

The results of the tests are summarized in Table 9, showing the algorithm was able to 

successfully classify and provide distance estimates that closely matched the measured values. 

For example, at 1.85 meters, the reported distances were nearly identical, with classification 

confidence scores of 88% for the chair and 74% for the cup. Similarly, at longer distances like 5 

and 10 meters, the algorithm continued to provide accurate distance estimates, with small 

deviations of a few centimetres from the measured values. 

 

Table 9: Measured distances versus the reported distances of a static chair and cup after calibrating the distance 
coefficients for the camera.  

Measured Distance 
(m) 

Chair Reported 
Distance (m) 

Chair Classification   
Confidence (%) 

Cup Reported 
Distance (m) 

Cup Classification 
Confidence (%) 

1.85 1.85 88 1.82 74 

3 2.97 85 2.95 73 

5 5.01 89 4.96 74 

10 9.94 78 9.85 65 

 

The confidence scores for both objects decreased slightly as the distance increased, which is 

expected due to the limitations of monocular distance estimation at greater ranges. In general, the 

cup’s classification appears to struggle a bit, but this is likely due to the test object being 
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described as a “shaker bottle” rather than a real cup. Overall, the results are promising. However, 

it’s important to note the simplicity of this experiment. These results demonstrate the potential of 

the video processing component as a foundational step, but all detections were performed on 

static objects. More advanced estimation algorithms will likely be required for this in dynamic 

environments, with moving objects.  
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5 Discussion 

5.1 Real-Time Processing 

From the initial results, the software demonstrates it can meet the near real-time processing 

constraints, while successfully recording and processing data within a ~0.2 second 

synchronization window. Both the radar and video processing pipelines are efficient enough to 

handle the incoming data while maintaining a steady flow of detections for tracking. One 

challenge noted from the current algorithm is the storage requirement for embedded hardware. 

This is caused primarily due to the size of the raw and processed images from the video 

processing pipeline. With two images being saved approximately every 0.113 seconds, this 

quickly adds up, especially for extended runs on embedded hardware. 

To address this, there are opportunities to optimize storage without losing critical data. One 

approach could be compressing the saved images to reduce their size. Another more efficient 

method would involve saving only the images while storing the bounding box information as 

separate text files. This approach would drastically reduce the storage footprint—bounding box 

data for one minute would be approximately 0.5 MB, compared to the 75 MB currently used for 

half the video data. These adjustments would make the system more practical for long-term use, 

especially on resource-constrained devices that may be attached to a UAV. 

As more complex algorithms are added to this architecture, it will be important to continuously 

monitor their processing and adjust that synchronization window as needed if the processing 

takes longer. 

5.2 Radar Processing 

The radar processing pipeline demonstrates good performance in detecting hovering UAVs at 

various distances, but there are many areas for improvement. In a single-frame’s signal analysis, 

more detections often come from noise than the actual target, which remains a challenge in many 

scenarios. While increasing the CFAR parameters could reduce false detections, it sometimes 

results in losing the original target, making it a trade-off between sensitivity and noise filtering. 

The approach of combining CA-CFAR detections with the STFT-based movement analysis has 

shown improved results for static UAV detections. This approach performs well for detecting 
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objects at 1.3, 5, 15, 20 and 29 meters as shown in the results section for radar and object 

tracking. However, the approach does require the objects to remain stationary within the one-

second window used for STFT calculations. A key limitation of this method is its reliance on 

minimal movement within the detection window. If the UAV moves significantly during this 

period, the algorithm struggles to identify the high-power regions needed for accurate detections. 

Expanding the algorithm to pull out signals from adjacent regions could improve performance 

for slightly dynamic objects. 

Future improvements could involve training a classifier to validate UAV detections based on 

combined features such as power level, range, and frequency signature. Adding true micro-

Doppler analysis would also be critical, allowing the system to differentiate between UAVs and 

other moving objects, such as birds, similar to the results in [75]. This classification would make 

the system more robust in real-world scenarios where noise and non-target objects are common. 

This classification would make the system more robust in real-world scenarios where noise and 

non-target objects are common. 

More data collection and experimentation with moving objects are necessary to identify and 

address weaknesses in the current approach. This will help refine the algorithm further, ensuring 

it performs reliably in both static and dynamic scenarios. 

5.3 Object Tracking 

The results from the initial UAV tracking results show the system performs okay for association 

and well for distance accuracy. For example, at 29 meters, the radar processing consistently 

provides distance estimates within 0.5 meters of the ground truth, translating to less than 2% 

distance error. This level of accuracy is good, but there’s still room for improvement with further 

refinement of the parameters and processing pipeline to improve. One example is the issue of not 

consistently detecting objects at 1.3m, this is likely a signal processing issue. The CA-CFAR 

detection does not always identify the tracks that are causing the errors. This highlights the 

requirement for all processing to be tuned correctly and accurately. More complex algorithms, in 

general, would be helpful to accurately identify objects. One potential avenue for improvement is 

adopting a machine learning-based approach for association [76] [77], which could use the data 

to optimize track associations based on patterns in the environment. 
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In general object tracking will greatly benefit from the integration of video data as an additional 

source for the Stone Soup algorithm. Incorporating detections from the video camera could help 

improve the robustness of the tracking, especially in cases where radar data alone struggles with 

noise or sparse detections. This multi-sensor approach could reduce reliance on a single modality 

and improve the system's ability to handle varying environments. 

The current results provide a strong foundation, but additional work on multi-modal integration, 

parameter tuning, and association algorithms will be key to scaling the system for more dynamic 

scenarios. There are plans to test and try these association methods on data with moving UAVs, 

but at the time of writing this, the GPS data was not available, so capturing MOT metrics wasn’t 

possible.  

5.4 Video Processing 

The video processing results are still in the early stages, with limited experimentation completed 

so far. The initial tests show that using calibrated coefficients for estimating object distance is 

feasible, but the method is highly sensitive to the positioning of the targets. Since the approach 

relies on the relative size of the bounding box, even small changes in object orientation or 

placement could significantly influence the results. The objects in this experiment were not 

rotated, which would have increased distance estimation for irregular shapes. 

While the current implementation is simple and serves as a proof of concept, it highlights the 

need for more advanced distance estimation algorithms when using a monocular camera. 

Methods that go beyond YOLO-based detection and bounding box size, such as the deep 

learning approach described by Patel et. al [33] could provide more robust and accurate results. 

Keeping this initial pipeline simple did help validate that the processing pipeline could run 

detection on the embedded Nvidia Jetson board with this simple algorithm. It lays some of the 

groundwork for more sophisticated ML-based distance algorithms in future iterations. 
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6 Future Work 

There are several areas of improvement and expansion for this project, particularly in integrating 

video and radar data. While the current implementation demonstrates promising results, we were 

unable to test the radar and video feeds simultaneously since synchronized data collection hasn’t 

occurred yet but should soon. Future work will focus on combining these modalities to explore 

how the radar and video detections can complement each other for better tracking and 

localization accuracy.  

For the radar, a major next step is to move beyond the current STFT-based movement detection 

and incorporate full micro-Doppler analysis. This would allow the system to identify specific 

UAV signatures and differentiate them from other objects, like birds. Alternatively, moving to a 

machine learning-based approach for signal analysis could improve the radar’s ability to 

distinguish between different object types while still handling noise and clutter effectively. Fine-

tuning the CFAR parameters with real UAV data is another priority, as this could significantly 

improve detection accuracy and reduce false positives in various scenarios. When using airborne 

radar, the presence of motion artifacts and the absence of typical stationary clutter will introduce 

additional challenges. Addressing these issues will be critical for ensuring the system can reliably 

process and track moving objects. 

For the video processing, advancing beyond the current YOLO-based setup is a natural 

progression. Incorporating pose estimation or fusing radar and camera data could enhance the 

system’s ability to localize objects with greater accuracy. Additionally, using a more complex 

CNN or ML-based approach for distance estimation from the monocular camera would be 

valuable for detecting moving objects and handling more complex scenes. YOLO itself offers 

built-in tracking algorithms that assign track IDs across frames, which could be explored further 

to bridge the gap between radar and video tracking and potentially improve object association. 

With more collected data, additional adjustments to the Stone Soup parameters will also be 

necessary. There are many settings related to noise handling, association probabilities, and clutter 

rates that can be optimized as we gather more varied and dynamic datasets. Once the tracking 

and estimation systems are better tuned and performing reliably, the next step would be to 

integrate a collision avoidance system, leveraging the tracking results to create actionable 
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outputs for real-world UAV operations. A modified software design diagram can be seen in 

Figure 21 showcasing where a collision avoidance algorithm could fit.  

 
Figure 21: Updated software application diagram with the tracking algorithm sending data to a collision avoidance 
algorithm to help calculate actions to prevent a collision.  
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7 Conclusion 

This paper has presented a modular architecture for a UAV object tracking algorithm, designed to 

be easily deployed on various systems, including embedded hardware, using a Docker container. 

The results demonstrate that the current implementation can run efficiently on an Nvidia Jetson 

Orin, collecting and processing data in under 0.2-second intervals. The radar processing pipeline 

and tracking algorithms effectively detect and track hovering objects within the radar’s field of 

view, operating well within the 0.18-second synchronization window. Additionally, the initial 

video tracking algorithm, when calibrated, shows promise for estimating object distances 

accurately. 

While the individual components have been tested and shown to be effective as a foundational 

system, there is clear room for improvement. The modular nature of the architecture ensures that 

future enhancements, such as advanced algorithms or additional processing steps, can be 

integrated seamlessly. This flexibility makes the system not only a robust starting point for UAV 

tracking but also a platform that can evolve over time to adopt leading methods and further 

optimize performance based on collected data. 
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