
UAV OBJECT TRACKING WITH MODULAR ARCHITECTURE

by

Nathaniel Bowness

Under the supervision of

Dr. Miodrag Bolic

An Engineering report

presented to the University of Ottawa and Carleton University

in partial fulfillment of the requirements for the degree of

Master of Computer Science

in the Program of

Computer Science

Ottawa, Ontario, Canada, 2025 © (Nathaniel Bowness) 2025

ii

Declaration

I declare that this major research paper is my original work and has been composed by me. This

work has not been submitted, in whole or in part, for any other degree or professional

qualification. I confirm that all content within this paper, except where explicitly noted, is my

own. Sections that include data and experimental setup images were provided by members of the

CARG research group are duly acknowledged.

I also declare that this work adheres to the principles of academic integrity.

iii

UAV OBJECT TRACKING WITH MODULAR ARCHITECTURE

Nathaniel Bowness, Master of Science in Computer Science, University of Ottawa, 2025

Abstract

This paper presents a modular architecture for UAV object tracking designed for deployment on

embedded systems using Docker containers. The system integrates radar and video processing

pipelines, combining detections with a GMPHD-based tracking algorithm to achieve near real-

time performance. The radar data processing algorithm effectively tracks hovering objects within

a 0.18-second synchronization window, while the initial video pipeline demonstrates accurate

distance estimation of static objects. Testing on an Nvidia Jetson Orin shows the system can

process and record data within 0.2-second intervals, making it suitable for real-time applications.

This work provides a solid starting point for UAV tracking on embedded systems, allowing for

easy testing and improvements to individual pieces. The current solution has room for refinement

and scalability to handle more dynamic environments and evolving requirements as algorithms

improve over time.

iv

Acknowledgements

I would like to thank my supervisor, Dr. Bolic, for his guidance and consistent support

throughout this project. His feedback and insights helped keep me on track and steer the project

in the right direction. I would also like to thank Dr. Mehta, who collected and provided all the

data in this project and contributed to many discussions that shaped its direction. Additionally, I

would like to sincerely thank Dr. Azad for his expertise and assistance with various signal-

processing tasks. Lastly, I would like to thank Fardad, Brian, and other members of the CARG

research group for their helpful discussions and for fostering such a professional and welcoming

environment.

v

Dedication

I dedicate this work to my wife, Émélie, for your unwavering love and encouragement, and to

my parents and brother for their endless support throughout my journey. I also want to express

my appreciation to my dogs, Freyja and Svana, for always getting me out of the house and

keeping me grounded, and to my friends and other family for always being there to cheer me on.

This work would not have been possible without all of you.

vi

Table of Contents

Declaration .. ii

Abstract ... iii

Acknowledgements .. iv

Dedication ... v

Table of Contents .. vi

List of Tables... viii

List of Figures ... ix

Definitions and Acronyms ... xi

1 Introduction .. 1

2 Literature Review and Background... 3

2.1 FMCW Radar .. 3

2.1.1 Radar Signal Processing .. 4

2.1.2 Object Detection .. 4

2.1.3 Object Angle Estimation and Velocity .. 5

2.2 Video Processing .. 6

2.2.1 Object Detection and Classification .. 6

2.2.2 Distance Estimation ... 7

2.3 Object Tracking .. 7

2.3.1 Object State Prediction ... 8

2.3.2 Track Estimation ... 9

2.3.3 Stone Soup – Library for Track Estimation .. 9

2.3.4 Evaluation of Object Tracking .. 10

2.4 Sensor Synchronization for Real-Time Processing .. 11

2.5 Software .. 12

2.5.1 Containerized Applications ... 12

2.5.2 Docker Images ... 12

3 Methods ... 14

3.1 System Architecture ... 14

3.1.1 Running On Different Environments ... 15

3.1.2 Container Integration With Operating System .. 16

vii

3.1.3 Hardware ... 17

3.2 Software Application Design ... 17

3.2.1 Sensor Data Capture and Processing .. 17

3.2.2 Data Synchronization .. 19

3.3 Radar Processing.. 20

3.3.1 Radar Data Collection ... 20

3.3.2 Radar Data Processing .. 21

3.3.3 Radar Experimental Setup with Hovering UAV .. 23

3.4 Video Processing .. 24

3.4.1 Object Detection from Video ... 24

3.4.2 Object Distance and Angle Estimation ... 25

3.4.3 Distance Estimation Experiment ... 27

3.5 Object Tracking .. 27

3.5.1 Picking an Object Tracking Method .. 27

3.5.2 Modifying Stone Soup for Real-Time .. 28

4 Results ... 29

4.1 Real-Time Processing ... 29

4.2 Radar Processing.. 30

4.2.1 Hovering UAV Detections .. 30

4.3 Object Tracking .. 32

4.3.1 Initial Algorithm Testing ... 32

4.3.2 Results for Hovering UAV Tracking ... 33

4.4 Video Processing .. 35

5 Discussion ... 38

5.1 Real-Time Processing ... 38

5.2 Radar Processing.. 38

5.3 Object Tracking .. 39

5.4 Video Processing .. 40

6 Future Work .. 41

7 Conclusion ... 43

8 References ... 44

viii

List of Tables

Table 1: Main technical specifications of the Jetson Orin Nx 16GB board used for initial real-

time data collection [65]. This was not used for object-tracking evaluations, that will be future

work. ... 17

Table 2: CA-CFAR parameters used for all signal processing in the experiments. 21

Table 3: FMCW Radar configuration for all test results. .. 23

Table 4: Average processing time to get detections from the video and radar on the Orin Board,

including processing. .. 29

Table 5: Approximate data creation for a 1-minute trial, broken down into the video, radar and

object tracking portions. This is an approximation when saving 1280x720-sized images from the

camera at each interval. ... 30

Table 6: Performance testing results of PDA, JPDA and GMPHD over 1000-time intervals when

there is one “true” object to track for each interval with a clutter rate of 3.0. 33

Table 7: Performance testing results of PDA, JPDA and GMPHD over 1000-time intervals when

there are ten “true” objects to track for each interval with a clutter rate of 3.0. 33

Table 8: CLEAR MOT metrics, for the gathered data for a UAV hovering above the radar. As

well as the maximum deviation from the true object distance. The metrics consider a true

positive to be within ~0.4m of the known distance to the object. This is approximately two range

bins. ... 35

Table 9: Measured distances versus the reported distances of a static chair and cup after

calibrating the distance coefficients for the camera. ... 36

ix

List of Figures

Figure 1: Representation of an FMCW chirp transmitted from a transmitter, Tx, for a chirp

duration of Tc with a signal bandwidth of B. The reflected signal is later received td time later on

each receiver channel Rx [16]... 3

Figure 2: Overview of the CA-CFAR processing algorithm with guard cells [23]. 5

Figure 3: View angle estimation, 𝛼, based on FMCW radar with two receiver antennas (Rx1,

Rx2) [19]. .. 5

Figure 4: Graphical representation of the predict-upgrade process of the Kalman filter [39]. 8

Figure 5: Overview of how containers use the underlying infrastructure [58]. 12

Figure 6: System architecture of the containerized object tracking software running on a

computer with a Radar Kit and Camera connected to it. .. 14

Figure 7: Dockerfile for creating a docker image that can be run on Linux (left) and Jetson-

Jetpack5 (right) operating systems. They have identical steps, aside from swapping the

Ultralytics base image. .. 15

Figure 8: Docker run commands for running containers with GPU access for Linux (top) and

JetPack 5 (bottom). Both containers also mount a container volume to store the processed data

directly on the OS. .. 16

Figure 9: Overview of the containerized tracking application. It contains 3 main parts: the

tracking program is responsible for starting data collection and data processing in separate

threads and monitoring the queue of detections to find and report current tracks. 18

Figure 10: Flow chart diagram of the main processing loop that synchronizes asynchronous

sensor data that is pushed to the detect_queue based on the time of the detections. 19

Figure 11: Example output of the frequency versus time graph that is created after taking the

SFTF. This graph shows a higher power region at ~-0.6 kHz indicating movement over the entire

time interval. ... 22

Figure 12: Sliding window technique used against the Radar data to continuously calculate the

STFT across a window of n samples [70]. .. 22

Figure 13: Experiment with the DJI mini-UAV hovering about the FMCW Radar at distance d

for various experiments. This image shows the DJI mini 1.3 meters from the radar. 23

x

Figure 14: Code snippet from the primary portion of the video processing algorithm. Using the

configured video source, it runs the YOLOv8 model to find bounding boxes, calls a function to

get the relevant detection details and submits it to the data queue for tracking. 25

Figure 15: A plot of the signal versus power for the Rx1 and Rx2 signals with lines showing their

CA-CFAR threshold is required to be considered a peak. The plot shows a true detection at 29m

and noise that resulted in detections at ~1m and ~85m. ... 30

Figure 16: Frequency versus time plot, with the power levels shown. The plot shows higher

power at 29m, indicating motion over the entire 1.3-minute trial. ... 31

Figure 17: Frequency versus time plot for six samples, with the power levels shown. The plot

shows higher power at 29m, indicating there was motion at that distance over the six samples. 31

Figure 18: Plot of the radar detections for a single time interval without checking for movement,

i.e. just using the CA-CFAR on the FD signal (left), and a plot of detections after only including

detections that also had movement identified with STFT. .. 32

Figure 19: Sample track shown from the Stone Soup UI, showing the individual detections, the

track points and track uncertainty for a specific time. .. 34

Figure 20: Picture of a video frame with the YOLOv8 bounding boxes, annotated with the

calculated distance after calibrating the coefficient for the chair and cup. The measured distance

for both was approximately 1.85 m. ... 36

Figure 21: Updated software application diagram with the tracking algorithm sending data to a

collision avoidance algorithm to help calculate actions to prevent a collision. 42

xi

Definitions and Acronyms

Acronym Definition

AoA Angle of Arrival

BB Bounding Box(es)

CA-CFAR Cell-Average Constant False Alarm Rate

CFAR Constant False Alarm Rate

CLI Command-line Interface

CNN Convolutional Neural Networks

DL Deep learning

EKF Extended Kalman Filter

FD Frequency Domain

FFT Fast Fourier transform

FMCW Frequency Modulate Continuous Wave

FOV Field of View

GMPHD Gaussian Mixture Probabilistic Data Association

JPDA Joint Probabilistic Data Association

ML Machine Learning

MOT Multiple Object Tracking

MOTA Multiple Object Tracking Accuracy

MOTP Multiple Object Tracking Provision

PDA Probabilistic Data Association

SIAP Single Integrated Air Picture

SSD Single Shot multibox Detector

STFT Short-Time Fourier Transform

TD Time-Domain

UAV Unmanned Aerial Vehicles

YOLO You only look once

2D Two-dimensional

3D Three-dimensional

1

1 Introduction

Unmanned aerial vehicles (UAVs) have seen rapid adoption in many applications over the last

few years. Their recent popularity can be attributed to their versatility, maneuverability, and cost-

effectiveness. Recent advancements in battery life and sensor technology have further advanced

UAV effectiveness. Today, UAVs are commonly used in applications such as: agriculture [1],

search and rescue [2], environmental monitoring [3], and object tracking of both aerial and non-

aerial object detection [4], [5].

The integration of UAVs with deep learning (DL) and other machine learning (ML) algorithms

that can run directly on embedded hardware has significantly improved UAVs’ independence.

[6]. These algorithms enable UAVs to perform complex tasks independently without relaying

data to a central computer for processing. For instance, convolutional neural networks (CNNs)

models such as YOLO can quickly process high-resolution images on a UAV [7]. This allows it

to quickly and accurately classify fast-moving objects, which is essential for applications like

monitoring traffic or wildlife. [3]. DL models are also capable of processing radar data to

perform object detection, as demonstrated by the RadarFormer model created by Dalbah et al [8].

Using radar for object detection is particularly useful in conditions where visual sensors alone

may fail, such as poor weather or visually cluttered environments. Using on-board UAV sensors

and tailored DL modes has opened numerous ways to perform tasks.

The combination of DL models and sensor data has also significantly enhanced UAV capabilities

to perform object-tracking [9]. Object tracking is a computer vision technique that monitors the

movement of objects seen through a UAV’s cameras and sensors over time [10]. By leveraging

ML models that can analyze a stream of real-time data, a UAV can track various objects that it

has identified in its vicinity [11]. Utilizing diverse sensor data in the object detection and

tracking algorithm can be beneficial for operating in various environments. Different sensors

allow the UAV to perform consistently across different conditions and obstacles, whereas a

system with one type of sensor could not. The ability to track objects is crucial for many

applications where UAVs monitor dynamic objects that may be continuously moving themselves

or just with respect to the UAV.

2

Object tracking on UAVs is complex and presents many challenges due to their maximum load

and battery life restrictions. These restrictions limit the UAV’s processing power, which in turn

limits the complexity of algorithms that can be executed on board. It also means any algorithm

must strike a careful balance between the performance of tracking the object and the computation

processing required on the real-time data. As highlighted by Sampedro et al., UAVs must deploy

ML-based techniques that are computationally efficient while still delivering reliable results [12].

Addressing these challenges requires using more efficient computable models. This can be done

through either hardware optimization or improved algorithm design, as well as ML models that

are tailored to operate in a resource-constrained environment. This could potentially be done

through model quantization or other techniques.

The primary motivation for this project is the need for a modular framework capable of

supporting object tracking on embedded systems. Radar integration on UAVs provides an

essential advantage for tracking objects in environments where visual sensors may face

limitations, such as poor weather or visual clutter. The addition of video also adds the ability to

classify and detect objects in the field of view quickly. Both fields constantly adapt, and the

ability to test different algorithms and models or experiment with variations in processing raw

sensor data is crucial for improving UAV tracking systems. With operating systems and hardware

constantly evolving, designing a flexible framework to adapt is vital while remaining efficient on

resource-constrained embedded devices.

3

2 Literature Review and Background

2.1 FMCW Radar

The frequency-modulated continuous wave (FMCW) technique [13], [14] is widely used in radar

UAV detection due to its high-range resolution and capability to perform real-time surveillance

[15]. Unlike pulsed radar systems, FMCW radars continuously transmit a frequency-modulated

signal, commonly called a "chirp," that linearly increases or decreases in frequency over a set

period, known as the chirp duration Tc. This technique allows for precise measurement of both

the range and velocity of targets using relatively low-power [14]. An example of an increasing

chirp can be seen in Figure 1.

Figure 1: Representation of an FMCW chirp transmitted from a transmitter, Tx, for a chirp duration of Tc with a
signal bandwidth of B. The reflected signal is later received td time later on each receiver channel Rx [16].

The following formula can approximate the linear sweeps of FMCW radars:

𝑥௧(𝑡) = 𝐴𝑒௝൫௪௧ାగ మ൯ + 𝐴∗𝑒ି௝൫௪௧ାగ మ൯ (1)

where A is the signal amplitude, 𝑆 =
஻

೎்
 is known as the chirp rate, 𝜔 = 2𝜋𝑓௖ is the lower chirp

frequency, and B is the bandwidth of the signal [14], [17].

Newer FMCW radar systems are compact, cost-effective, and energy-efficient, making them

suitable for embedded applications [18]. FMCW radars typically come in two-dimensional (2D),

like the IMST sr-1200e [19], and three-dimensional (3D) configurations [20]. A 2D FMCW radar

typically includes one transmitter and two or more receivers, while a 3D FMCW radar system

leverages multiple transmitters and receivers. Due to this configuration, 2D radar can provide

4

range and velocity information in a single plane. While 3D FMCW radar systems allow for the

localization of objects in three-dimensional space, they also allow for more versatility in object

tracking.

2.1.1 Radar Signal Processing

FMCW radar sensors usually transmit multiple chirp signals, as described by Eq. 1, sequentially

in time. Objects in the radar’s environment will reflect the emitted signal and are later captured

by one or more receivers. The round-trip delays the received reflections of the transmitted signal

𝑡ௗ, as seen in Figure 1 and mixed with the original signal to produce a beat frequency 𝑓௕. Using

signal processing techniques like the fast Fourier transform (FFT), high-resolution range data can

be obtained from the received signals [17]. Taking the FFT converts the time-domain signal into

the frequency domain (FD) so we can find amplitude data across a series of range bins. The

frequency bandwidth of the radar will determine the range resolution of these bins, as it impacts

the range bin size [14]. The range bin size can be calculated as seen in equation 2, where c is the

speed of light, and B is the frequency bandwidth of the Radar.

∆𝑅 =
௖

ଶ஻
 (2)

2.1.2 Object Detection

It is common to have noise and other various signal inconsistencies for the frequency domain

data for the received signals. This can make it challenging to determine which portions of the

signal represent a true “detection” representing an object in the radar’s view or other noise. To

identify objects among the noise, one approach is using a Constant False Alarm Rate CFAR [21],

[22], [23]. CFAR allows users to change the detection threshold based on the amount of noise

and false detections expected.

There are numerous CFAR algorithms, Figure 2 below is an overview diagram of Cell-Averaging

CFAR (CA-CFAR). For CA-CFAR, a range of cells surrounding the Cell-Under-Test (CUT) are

divided into training and guard cells to prevent signal increases from the CUT itself. The noised

power is calculated at the average of the signal power of the training cells, and the detection

threshold is determined by multiplying this noise estimate by a threshold factor. The algorithm

then compares the signal in the CUT against this adaptive threshold, marking it as a detection if

the signal exceeds the threshold.

5

Figure 2: Overview of the CA-CFAR processing algorithm with guard cells [23].

2.1.3 Object Angle Estimation and Velocity

FMCW radar sensors can estimate the angle of arrival (AoA) for detected objects using the

spatial separation between their different receivers [17]. Signals measured by two receivers (e.g.,

Rx1 and Rx2) exhibit a phase shift due to the distance between them. An example diagram of

this can be seen in Figure 3.

Figure 3: View angle estimation, 𝛼, based on FMCW radar with two receiver antennas (Rx1, Rx2) [19].

The detected object’s view angle 𝛼, is related to the phase shift 𝜑, by equation 3. Where c0 is the

speed of light, fc is the central frequency of the transmitted signal and b is the distance between

receivers.

𝛼(𝜑) = sinିଵ ቀ
ఝ∙௖బ

ଶగ∙௙೎∙௕
ቁ (3 [19])

6

FMCW radars can also estimate a target's velocity using the Doppler shift of the reflected signal.

The Doppler shift is analyzed by examining the phase difference of successive chirps, allowing

for simultaneous range and velocity measurements [17]. This dual capability is crucial for

distinguishing between stationary and moving objects.

The Short-Time Fourier Transform (STFT) is an effective method for analyzing and interpreting

movement in UAV radar data [24]. Segmenting the radar signal into short time intervals and

applying the Fourier Transform to each segment allows for detecting movement patterns in the

data, which can help distinguish moving objects, including the rotation of UAV rotor blades. A

spectrogram can visualize the STFT output, a time-frequency plot that provides a clear visual of

these behaviours [25].

2.2 Video Processing

Video processing has become a highly effective tool for detecting UAVs [26], [27]. Image

processing techniques can identify and classify objects by analyzing individual frames from

video feeds, enabling real-time detection and tracking. Analyzing image frames has the benefit of

performing more complex detections than you can do with Radar, including UAV payload

detection [27] or detection of UAVs versus birds [28]. Recent studies have also shown that UAV

to-UAV detection and tracking can be fast and accurate even using hardware embedded in the

UAV [29].

2.2.1 Object Detection and Classification

Object detection is a computer vision technique that identifies and classifies objects within an

image or video, labelling their locations using bounding boxes (BB) [7]. Numerous object

detection ML models have been created that balance speed, accuracy and different techniques for

object detection. Some notable models are Singe Shot MultiBox Detector (SSD) [30],

EfficientDet [31] and YOLO [7] among many others. This project will leverage and focus on the

YOLO series of object detection models as they have become the leading solution for real-time

image detection due to their speed and accuracy. One of YOLO's key advantages is its ability to

perform quick object detection by segmenting input images into a grid and predicting bounding

boxes and class probabilities simultaneously.

7

This design makes YOLO well-suited for deployment on embedded systems that may have

limited computational power such as NVIDIA Jetson boards, which are optimized for edge AI

applications. Ultralytics [32], an ML company that has recently committed to maintaining and

releasing new versions of YOLO has published docker images that can be run directly on Nvidia

Jetson devices, making it a great choice for edge applications, including UAV tracking solutions.

2.2.2 Distance Estimation

Beyond object detection, the bounding boxes produced by YOLO models provide a foundation

for estimating object distance and orientation. For a monocular camera, simple distance

estimation typically requires calibration of the software and camera, correlating the size and

position of bounding boxes with real-world distances. Angle estimation can also be done by

analyzing the relative positions and sizes of bounding boxes within the image frame.

Recent research, including [33], and Dist-YOLO [34] have taken these distance estimation

algorithms further by training ML algorithms to estimate distances based on image scaling and

geometry using a monocular camera. These estimations are generally vital for UAV tracking and

interception systems, which rely on accurate spatial data to predict trajectories and behaviours.

2.3 Object Tracking

Object tracking of moving targets is a complex task because of the constantly changing target

position, speed and location. Often, sensors do not pick up all targets during each time interval.

This can be caused by targets quickly entering and exiting the sensor's field of view, leading to

intermittent detections. Sensors are also affected by noise and surrounding environmental issues,

which can cause misidentifications of objects that may not be present. Multiple objects in the

FOV further complicate tracking, as they can cross paths, hide behind one another, and change

speed or direction, which need to be accounted for. These challenges necessitate robust tracking

algorithms capable of maintaining accurate object trajectories over time.

Object tracking can be achieved in video processing by analyzing individual frames and

associating detected objects across consecutive frames. Models like YOLO (You Only Look

Once) facilitate this process by detecting objects and providing bounding box coordinates in each

frame [35]. By comparing these coordinates frame by frame, the system can track the movement

8

and changes of objects over time. This method relies on spatial information within the image to

maintain object identities throughout the video sequence [36].

Conversely, radar-based object tracking utilizes distance (range) and angle measurements to

estimate object positions. Instead of relying on visual data, radar systems detect objects based on

their spatial coordinates relative to the sensor. This approach is particularly effective in

conditions where visual data may be unreliable, such as low visibility or adverse weather.

However, sophisticated algorithms are required to associate these measurements accurately with

specific objects, especially in cluttered environments [37].

2.3.1 Object State Prediction

A critical component of object tracking is the prediction of a target’s future state. The Kalman

Filter [38] is an algorithm used for state prediction, providing estimates for a target’s position

and velocity. It operates using a two-step approach for each time interval. First, it predicts the

state of the target in the next time step using the system’s covariance and motion model. Then,

once new data is received, the filter will refine those predictions based on the real data and

provide another update in a consecutive loop. The algorithm assumes linearity and Gaussian

noise, making it suitable for systems where these conditions hold. Figure 4 shows the two-step

process, where 𝑝(𝑥௞|𝑥௞ିଵ) is the state transition probability given the state and time k -1 and 𝑧௞

is the sensor measurement as time k.

Figure 4: Graphical representation of the predict-upgrade process of the Kalman filter [39].

For systems exhibiting non-linear behaviours, the Extended Kalman Filter (EKF) [40] extends

the Kalman Filter to handle non-linearities by linearizing the system around the current estimate.

9

This adaptation allows the EKF to provide more accurate state estimations in complex scenarios,

such as tracking objects with non-linear motion patterns.

2.3.2 Track Estimation

Effective object tracking necessitates advanced estimation techniques to accurately associate

measurements with existing tracks and remove older tracks that have not been updated. It’s also

important to manage uncertainties in multi-object environments, as objects could potentially be

associated with different tracks. There are numerous methods that help achieve this with various

benefits and drawbacks, three will be discussed below.

One method that was evaluated in this project was the Joint Probabilistic Data Association

(JPDA) method [41]. JPDA builds on the original Probabilistic Data Association (PDA) [42],

which assigns probabilities to potential associations between measurements and existing tracks

by considering the likelihood of each association. JDPA instead considers evaluates all possible

associations jointly, offering a more robust solution for tracking multiple targets. This joint

consideration ensures that overlapping or closely spaced objects can be accurately tracked

without significant ambiguity. The JPDA approach was further developed to address the

complexities of multi-target environments.

Another method the Gaussian Mixture Probability Hypothesis Density (GMPHD) filter [37]

models the target state as a mixture of Gaussian components, enabling efficient handling of

multiple targets. It dynamically initiates new tracks and terminates obsolete ones, making it

particularly effective in scenarios where objects frequently appear and disappear. By managing to

track births and deaths probabilistically, GMPHD adeptly distinguishes true targets from false

alarms, even in high-clutter environments.

2.3.3 Stone Soup – Library for Track Estimation

The Stone Soup software project [43] provides a comprehensive library for implementing object

tracking systems, integrating advanced data association techniques into a flexible and extensible

platform. Designed for researchers and developers, Stone Soup supports modular components

that allow for easy customization and experimentation. Key features include support for a wide

range of tracking filters, including Kalman, Extended Kalman, and Particle Filters; built-in

implementations of advanced data association algorithms, such as PDA, JPDA, and GMPHD;

10

and tools for multi-sensor fusion and track evaluation, enabling the development of sophisticated

tracking solutions. The flexibility of Stone Soup makes it an ideal choice for UAV tracking

applications, where the ability to integrate radar and video data seamlessly is critical. By

leveraging its pre-built modules and extensive documentation, users can focus on adapting the

framework to their specific use case, reducing development time.

2.3.4 Evaluation of Object Tracking

Evaluating the accuracy of object tracking is an important part of tracking algorithms to see how

accurate they are and how they compare against each other. There are two sets of metrics that are

often used for performance comparisons between object tracking algorithms, the CLEAR

multiple object tracking (MOT) [44] metrics and the single integrated air picture (SIAP) [45]

metrics.

The CLEAR MOT metrics are commonly used to evaluate UAV object-tracking algorithm and

will be used in this report [46], [47] [48]. CLEAR MOT consists of two common metrics that are

used for evaluation: multiple object tracking accuracy (MOTA) and multiple object tracking

provision (MOTP). MOTA measures the overall accuracy of a tracking system by accounting for

three primary factors: missed detections, false positives, and mismatches. This can be seen in

equation 4 below. Misses occur when a ground truth object is present, but the system fails to

associate the detection to a track because it either was not picked up by sensors or was identified

as too far away to match the correct track. False positives, on the other hand, occur when the

tracking algorithm identifies an object through a series of detections that do not correspond to

any ground truth object, often due to noise or incorrect associations [46]. The MOTP evaluate the

precision of the tracker by calculating the average distance between predicted positions and real

positions for each of the tracked objects. Lower values indicate better precision. Equation 5

below shows a general formula for calculating MOTP.

𝑀𝑂𝑇𝐴 = 1 −
ெ௜௦௦௘௦ାி௔௟௦௘ ௉௢௦௜௧௜௩௘௦ାூ஽ ௌ௪௜௧௖௛௘௦

்௢௧௔௟ ீ௥௢௨௡ௗ ்௥௨௧ ை௕௝௘௖௧௦
 (4)

𝑀𝑂𝑇𝑃 =
∑ ஽௜௦௧௔௡௖௘(௜,௧)೔,೟

ே௨௠௕௘௥ ௢௙ ெ௔௧௖௛
 (5)

11

2.4 Sensor Synchronization for Real-Time Processing

The synchronization of sensors is a critical component of real-time object detection and tracking

algorithms. Any misalignment can lead to errors in associating detections across sensors and

reduce system performance [49]. However, it can be difficult to synchronize the outputs perfectly

when dealing with multiple sensors that may operate with different sampling rates or generate

data asynchronously. There are a few common techniques that can be used for sensor

synchronization including hardware-level synchronization, dynamic time-warping [50],

resampling and event-based synchronization using queues or event buses. This report will mainly

focus on event-based synchronization, but we’ll also cover resampling as it could have been used

as well.

One common technique for handling differences in sampling rates between sensors is

resampling [51]. For instance, radar systems might output data at a fixed rate, such as every 0.25

seconds, while cameras may produce frames at irregular intervals or higher frame rates.

Resampling involves interpolating or down-sampling the higher-frequency data to match the

lower-frequency sensor or vice versa. This creates a uniform temporal framework, ensuring that

data points from both sensors are comparable and aligned.

Event-based synchronization can be achieved by having each data entry from the asynchronous

sensors timestamped upon collection or arrival in the queue [52] [53], [54] [55], [56]. The main

system then compares timestamps associated with events in the queue for a predefined temporal

window. If a pair of events occurs within that temporal window, both are associated together

[55]. This synchronizes the data between 2 different sensors with a maximum offset between

sensor data of the defined temporal window length. The event-based strategies allow for

buffering detections to wait for new incoming data from sensors that may be slower or simply

forward along one of many sensors' data if the temporal window is completed. The event-based

synchronization can also use more advanced techniques that may involve averaging

measurement if multiple occur with a single temporal window [56].

12

2.5 Software

2.5.1 Containerized Applications

Containerized applications benefit from dependency isolation for their required libraries and

folders while still sharing the same kernel with other containers in the group [57]. The container

engine is used to spin up the containers and provide them with CPU and RAM from the base

kernel they are on. The significant benefit is the dependency isolation between applications while

only requiring one operating system for many applications. An overview of how containers use

the underlying host kernel/OS and infrastructure can be seen in Figure 5 below.

Figure 5: Overview of how containers use the underlying infrastructure [58].

Another key advantage of containerized applications is their portability, which stems from their

ability to package an application along with all its dependencies into a single, self-contained unit

[57]. This makes running a container across different operating systems easy, given the kernel

has a container engine like docker installed. This is particularly important for running

applications that need access to specialized hardware like GPUs, or other infrastructure setups.

2.5.2 Docker Images

A Docker image serves as a template for creating one or more containers [59]. At its core, it’s a

rooted filesystem that includes all the file dependencies required for the applications that will run

inside the containers. These are often referred to as base images, which your application software

is added on top of. This means that when you launch a container from a Docker image,

13

everything the application needs to operate—libraries, binaries, and other runtime

dependencies—is already baked into the image. Docker makes the process of running containers

on different operating systems easier using the base image templates as it supports the main

operating systems like Linux or Windows as well as other variants like JetPack 4, 5 and 6, which

are used on Nvidia Jeston devices [60].

14

3 Methods

3.1 System Architecture

The system architecture for this project is designed for modularity, enabling easy replacement of

its different components without requiring changes to the others. It is composed of 4 main

components: radar, video, data synchronization and object tracking modules. All these modules

are currently running in a single container and can interact with the operating system’s console

and storage using a container runtime. Figure 6 illustrates the architecture and different modules

of the system.

Figure 6: System architecture of the containerized object tracking software running on a computer with a Radar Kit
and Camera connected to it.

This system architecture allows for both the radar module and the video module to be run

asynchronously, collect data at different rates, and eventually synchronize their outputs to feed

into the object-tracking algorithm. The internals of each module will be detailed further in a

future section. The synchronization layer also enables additional sensors to be added in the future

if required since their outputs could also be synchronized within the same time interval.

 An important consideration of the system design is storing the raw data received from the radar

and camera sensors for later reproducibility. Radar data is saved upon receipt, while both raw and

processed video frames, including bounding box annotations, are stored for later reprocessing as

well. The saved image frames can also be compiled into videos for future analysis. This allows

15

for tests to be done and later re-analyzed, and the raw data can be processed with potentially

different algorithms to improve the results later.

Since this is designed as a containerized application, it can work on a local computer or

embedded hardware if a container engine can be installed onto the operating system. This

includes systems like Windows, Linux or the Nvidia Jetson Orin Boards. The only requirement

will be the device has sufficient hardware capabilities to prevent bottlenecks in one of the

applications that may require a GPU to keep up with running the ML model processing in real-

time.

3.1.1 Running On Different Environments

Ultralytics, a primary maintainer of YOLO, provides pre-built Docker images specifically

designed for GPU-enabled containers on different operating systems. These images include all

necessary dependencies and are available for various Linux distributions and embedded

platforms like Jetson JetPack5 and Jetson JetPack6 [61]. This project adds additional software on

top of those base images, such as Python packages for Stone Soup [43] and other required for

radar processing and object tracking. Using these base images simplifies the deployment process

across different hardware and operating systems. Figure 7 below are the Dockerfiles to create

both the Linux and JetPack 5 images. The Dockerfiles are identical to the base image that is used

from Ultralytics. Using this approach, it becomes very simple to migrate any operating system

that Ultralytics will offer in the future as new software options like JetPack6 or others are

required.

Figure 7: Dockerfile for creating a docker image that can be run on Linux (left) and Jetson-Jetpack5 (right)
operating systems. They have identical steps, aside from swapping the Ultralytics base image.

16

To streamline the image-building process and software availability, GitHub Actions [62] were

implemented to automate the creation of Docker images. These actions build both Linux and

JetPack5-compatible images on demand whenever changes are pushed to the GIT repository.

[63]. The images are then published to Dockerhub [64] so they are available to any system that

has internet access. This allows for building default Linux and ARM-specific images that can be

pulled onto the corresponding operating systems and quickly run without ever directly

interacting with the code. This automation simplifies getting new code, or algorithms onto all

systems.

3.1.2 Container Integration With Operating System

There are small differences between running the containerized application based on the operating

system. This is caused by the different OS architectures and how GPUs are integrated. Jetson

boards required the “—runtime=nvidia” flag, as seen in Figure 8, because of their integration of

GPU and ARM-based architecture. Whereas Linux serves discrete GPUs that can use the “—

gpu” flag provided by the Nvidia toolkit to access and run workloads on the GPU. Aside from

the slightly different runtime flags, the containers running the software function the same.

Figure 8: Docker run commands for running containers with GPU access for Linux (top) and JetPack 5 (bottom).
Both containers also mount a container volume to store the processed data directly on the OS.

Another aspect of container integration is accessing the sensors. The sensors for all experiments

were either directly attached to the operating system, so they could be accessed by the container,

or available through the. It’s also required to write output files directly to the host operating

system for later analysis. This can be done by mounting an output container volume from the

container to a folder on the host OS as shown in Figure 8. Since each trial run might involve

different parameters or settings, it's essential to preserve the results for reproducibility. This

ensures all generated data, whether from radar, video processing, or object tracking, is accessible

outside the container and can be used for future offline evaluation and testing if desired.

17

3.1.3 Hardware

For real-time software testing, the Nvidia Jetson Orin 16GB was used for initial testing to ensure

the software works on embedded hardware. A full breakdown of the Nvidia Jetson Orin 16GB

can be seen in Table 1. For testing, the FMCW Radar was connected to over the local network,

and the USB webcam was directly plugged into the Jetson board and made available to the

container to stream video.

Table 1: Main technical specifications of the Jetson Orin Nx 16GB board used for initial real-time data collection
[65]. This was not used for object-tracking evaluations, that will be future work.

Computer Component Description

CPU 8-core Arm® Cortex®-A78AE v8.2 64-bit 2MB L2 + 4MB L3

Memory 16GB 128-bit LPDDR5 102.4GB/s

Storage 128GB NVMe

GPU 1024-core NVIDIA Ampere architecture GPU with 32 Tensor Cores

3.2 Software Application Design

3.2.1 Sensor Data Capture and Processing

The software application for this project is entirely Python-based and designed to be executed

from the command-line interface (CLI) of a container. An overview of the application structure is

shown in Figure 9 below. The application has various configuration options through the CLI or

through mounted configuration files to tune aspects of the application, including CFAR params,

synchronization windows, IP addresses for the radar and more. The configuration also includes

options for disabling the image or radar processing loop for individual testing of one or the other

if desired. As mentioned in the system architecture, the design is highly modular, allowing

different components to be updated or replaced without impacting the rest of the system.

18

Figure 9: Overview of the containerized tracking application. It contains 3 main parts: the tracking program is
responsible for starting data collection and data processing in separate threads and monitoring the queue of
detections to find and report current tracks.

The application is divided into 3 main processes: the radar processing loop, the image processing

loop, and the main tracking process which contains the synchronization and tracking loop. The

main process, “Tracking.py” in Figure 9, serves as the entry point and is responsible for initiating

the radar and image processing, which run in separate asynchronous Python processes. These

loops handle sensor data capture and independently process the raw data to detect objects and

publish them to the event data queue. Both the radar and video processing loops also save both

raw sensor data and processing results to the local computer. This enables future offline analysis

to reproduce results or try a different algorithm on the data that was captured during the real-time

process.

While the radar and image processing loops run, the main process continuously monitors the data

queue for incoming detections. The radar and image processing loops add details to the queue,

including the detection source, the x and y coordinates of detected objects, and additional object

classification details from YOLO for video processing. The main thread then gathers radar and

image processing detections during each synchronization period—if data from both sources is

available. This aligns the incoming detections from the two sensors. More details about this

synchronization will be given in the next section. After synchronization, the tracking system

performs data association and object tracking. The software will determine if new detections

below with new or existing tracks, as well as remove old tracks if needed. This approach blends

the multiple sensor inputs and simply treats them all as detections with a plane.

19

3.2.2 Data Synchronization

The software uses a single shared queue to manage and synchronize data from both the radar and

video processes, implementing an event base architecture. This queue simplifies the architecture

while ensuring the asynchronous sensor data can be processed with a defined maximum time

difference defined by the synchronization time window. The overall workflow can be seen in

Figure 10. The process starts with the video or radar processing, capturing their sensor data,

labelling it on a collection with a timestamp generated from the Python program, and processing

it. After the processing is complete and detections are potentially found, the processes will add it

to the detect_queue.

Figure 10: Flow chart diagram of the main processing loop that synchronizes asynchronous sensor data that is
pushed to the detect_queue based on the time of the detections.

The Main Processing Loop acts as the orchestrator, continuously monitoring the detect_queue,

for incoming detections. During each synchronization period, the timestamps of detections in the

queue to check if they fall within the defined synchronization window. If the detection is within

20

this window, it is passed to the object tracking algorithm to associate it with an existing track or

create new ones as needed. This synchronization approach means sensor data is aligned but can

result in a maximum time difference of the sync window’s time between associated detections. If

there are multiple batches of detections within a sync window, the current implementation will

use the ones with the most recent timestamp to the synchronization window for object tracking.

However, in the future multiple sets of detection could be normalized if they occur within the

same sync window.

 Any detections outside the synchronization period are buffered for the next processing cycle,

ensuring no data is lost while maintaining temporal alignment. If any detection in the queue has a

timestamp from before the window, they are discarded.

By using the timestamp of when data is collected, as created by the python code, it acts as a

unified reference, and the system avoids potential issues such as clock drift or misalignment

between sensors. This is a significant advantage of having a single Python application, where

time association is consistent and centrally managed. The queue-based architecture also allows

for configurable synchronization periods based on the sensor's uses and real-time constraints.

Overall, by combining modular sensor processing with synchronization and buffering through

the detection queue, the system enhances detection reliability and efficiency in real-time

environments.

3.3 Radar Processing

3.3.1 Radar Data Collection

The radar data collection was performed by connecting to the radar using the development kit

DK-sR-1200e [19]. The developer kit provides easy integration with the FMCW radar system for

configuration and data collection. The developer kit was used for all experiments to retrieve real-

time time-domain (TD) data generated from the FMCW radar system based on the transmitted

and received signals. This data is used downstream in subsequent processing to identify objects

in the radar’s FOV.

21

3.3.2 Radar Data Processing

The radar data processing pipeline begins by applying a hamming window to the TD data

collected from the radar. This is done using the NumPy hamming Python library [66]. The

hamming window, applied to all 1024 collected data samples, helps reduce the spectral leakage

before applying the FFT, improving the accuracy of range and velocity measurements. After the

hamming window, the FFT calculation is done on the TD data, converting it into the FD. This

conversion enables the identification of range bins corresponding to detected objects. The FFT

calculation is done using the NumPy FFT Python library [67].

After converting to the FD, a CA-CFAR algorithm is used to identify peaks that indicate the

presence of objects. CA-CFAR detection is applied across all 512 range bins in each of the

radar's FD signals from receivers 1 and 2. The algorithm currently assumes any detections made

in both receivers correspond to the same object and, therefore, can be treated as a single

detection for that range bin [68]. If only one receiver detects an object while the other does not,

it is assumed to be a real object rather than noise, and the detection is sent to the tracking

algorithm. The best CA-CFAR parameters do vary per experiment and the conditions, but for this

report, the CA-CFAR parameters used for all testing are defined in Table 2 below.

Table 2: CA-CFAR parameters used for all signal processing in the experiments.

CA-CFAR Parameter Value

Threshold 4

Guard Cells 2

Reference Cells 5

After using CA-CFAR to identify object detections, there were false detections found within the

FD signal. This could have been reflections of nearby objects or just noise in the signal

measurement. To improve processing, a step to compute the STFT of recent samples was added

to the processing. The STFT helps identify regions in the signal that indicate movement. This

helps reduce any false detections by eliminating regions where the STFT identifies no

movement. The STFT was calculated with the SciPy python library, allowing the system to

analyze the power level of specific frequencies over time [69]. Detected frequencies with high-

power regions, such as the ~0.6 kHz frequency in Figure 11, were extracted by applying CA-

22

CFAR to the average power spectrum of the STFT output, isolating high-power regions

corresponding to movement. Based on the radar's parameters, these frequencies were then

converted back to the correct distance and range bin using the corresponding frequency.

Figure 11: Example output of the frequency versus time graph that is created after taking the SFTF. This graph
shows a higher power region at ~-0.6 kHz indicating movement over the entire time interval.

The STFT is often applied across the entire signal to identify movement, however given the real-

time nature of this design the STFT will be applied using a windowed approach. A visual of the

sliding window approach can be seen in Figure 12. This means STFT will be calculated using the

most recent n samples of FD data. For objects where there is minimal movement within the n

samples, it is easy to estimate the range bin where the distance occurs. For these experiments, a

window size of 6 samples was selected, as it was sufficient to see specific frequency regions with

increased power that identified moving objects. The current and initial implementation only

looks for movement using the STFT, but eventually, it could be improved by looking for micro-

doppler signatures.

Figure 12: Sliding window technique used against the Radar data to continuously calculate the STFT across a
window of n samples [70].

23

After identifying the object detections for specific range bins using the CA-CFAR algorithm and

spectrogram analysis, the AoA is estimated using the original FFT results. We can map detections

onto the polar or cartesian planes for object tracking using the range bin for objects and the

angle.

3.3.3 Radar Experimental Setup with Hovering UAV

To test the radar processing pipeline, experiments were conducted using the stationary 24 GHz

FMCW radar [19], using the radar settings found in Table 3. All object detection sets were done

using a DJI Mini 3 Drone [71] hovering at predetermined distances above it. The radar faced the

sky, capturing reflections from the hovering UAV. The experimental setup can be seen in Figure

13 below.

Figure 13: Experiment with the DJI mini-UAV hovering about the FMCW Radar at distance d for various
experiments. This image shows the DJI mini 1.3 meters from the radar.

Table 3: FMCW Radar configuration for all test results.

Setting Value (Units)

Start-Frequency 24000 (Mhz)

Stop-Frequency 24750 (Mhz)

Ramp Time 3 (ms)

Number of Samples 1024

Range Bin Size 199.939 (mm)

Bin Size 339 (Hz)

Zero Pad Factor 1

Normalization 1

24

Tests were conducted with the DJI Mini UAV hovering above the radar at various distances, d of:

1.3m, 5m, 15m, 20m, and 29m. These tests provide a baseline for UAV detection using the radar

processing algorithm for a stationary object.

3.4 Video Processing

The video processing component for this project is designed as a preliminary example to show

how video-based object detection can be integrated into this system. The current implementation

captures raw video frames from a monocular camera and then processes them using a GPU-

accelerated ML model, YOLOv8, to perform object detection and estimate the object’s location.

These detections will then be added to the detection queue and passed for object tracking. The

following sections will cover the initial implementation of YOLOv8 and object location

estimation [72].

3.4.1 Object Detection from Video

The object detection algorithm can connect to a configurable video source, including online

video streams or locally attached cameras. The current algorithm captures image frames from the

video using OpenCV [73] at a predefined interval. This enables saving each raw image for later

processing and analysis of the video data. Each frame is processed independently using the

YOLOv8 object detection model [74]. It performs a frame-by-frame image analysis to identify

objects and their corresponding BB. The BB is used to estimate the distance and angular position

of each detected object in the frame. Details on the distance and angular position calculations

will be discussed further in the next section. Once the estimated position of each object is found,

the detected object's position is sent to the data queue for use by the object tracking algorithm. A

code snippet for the overall video processing algorithm can be seen in Figure 14 below.

25

Figure 14: Code snippet from the primary portion of the video processing algorithm. Using the configured video
source, it runs the YOLOv8 model to find bounding boxes, calls a function to get the relevant detection details and
submits it to the data queue for tracking.

While YOLOv8 offers built-in tracking algorithms that extend the frame-by-frame analysis into

temporal object tracking, they were not used in this implementation. Incorporating YOLO’s

built-in tracking capabilities could be explored in the future.

3.4.2 Object Distance and Angle Estimation

This project's method for estimating object distance and angle relies on the BB geometry derived

from the object detection algorithm, combined with the camera’s specifications. Using a

monocular camera, this technique provides a way to localize objects in 2D space without

requiring additional sensors or pose estimation of the object.

The classified object’s distance is estimated based on the BB width relative to the image width,

calculated using Equation 6. The width of the bounding box, in pixels, is normalized by the

image width to provide a fraction that serves as an inverse indicator of distance. We can find a

calibration coefficient CBB to relate the bounding box to the actual distance by using the

relationship between object size in the image and physical distances. This coefficient can be

calibrated before running object tracking using a known object at a known distance. Once you

have the coefficient, it can be used to calculate the known object’s distance in a new image frame

using Equation 7 – where the distance is unknown.

𝐵𝐵ௐ௜ௗ௧௛ூ௡௉௜௫ =
௕௢௧௧௢ ೝ೔೒೓೟ೣି௧௢௣೗೐೑೟ೣାଵ

ூ௠௔௚௘ௐ௜ௗ௧
 (6)

26

𝐷 = 𝐶஻஻
ଵ

ಳಳೈ೔೏೟೓಺೙ು೔ೣ
ೋ೚೚೘ಷೌ೎೟೚ೝ

 (7)

A default calibrated coefficient can be used for distance estimation of all objects. However, the

estimated distance can vary depending on the disparity between the detected objects' shapes.

Instead, the coefficient can be calibrated for several different objects. Since YOLOv8 will

classify the object, it’s possible to have a coefficient for each object to determine the distance

effectively. For this project, the coefficient was only calculated for the UAV and Human, but

others would need to be calculated for accurate distance estimation.

Angular estimation involves calculating the bounding box's horizontal and vertical center

positions, normalized to the image width and height. Equations 8 and 9 can be used to determine

the BB’s centroid in the image, which can then be used to calculate the azimuth, θ, and elevation,

ϕ, angles using Equations 11 and 12. The angles calculated are scaled using the camera's

horizontal and vertical FOV. A camera’s horizontal FOV is typically part of the specification, and

the vertical FOV can be calculated using Equation 10. The centroid’s displacement from the

image center provides the angular offsets that describe the object’s position in the camera’s frame

of reference.

𝐵𝐵ு௢௥஼௘௡௧௘௥ூ௡௉௜௫ =
௧௢௣೗೐೑೟ೣା௕௢௧௧ ೝ೔೒೓೟ೣ

ଶ∙ூ௠௔௚௘ௐ௜ௗ௧
 (8)

𝐵𝐵௏௘௥௧஼௘௡௧௘௥ூ௡௉௜௫ =
௧௢௣೗೐೑೟೤ା௕௢௧௧௢௠ೝ೔೒೓೟೤

ଶ∙ூ௠௔௚௘ு௘௜௚௛௧
 (9)

𝐹𝑂𝑉௩௘௥௧ = 2 ∙ 𝑡𝑎𝑛ିଵ ቀ𝑡𝑎𝑛 ቀ
ிை௏೓೚ೝ

ଶ
ቁ ∙

ூ௠௔௚௘ு௘௜௚௛

ூ௠௔௚௘ௐ௜ௗ௧௛
ቁ ∙

ଵ

஺௦௣௘௖௧ோ௔௧௜௢
 (10)

(11)

(12)

This approach assumes a simple monocular camera setup, where the bounding boxes directly

represent the object. This algorithm does not account for the object’s pose or potential rotation.

The algorithm prioritizes simplicity for an initial real-time object-tracking algorithm for video

27

processing that can be integrated with other sensor data. However, pre-calibration is required to

find the CBB for an object you want to track. Future iterations of the system could incorporate

more advanced techniques.

3.4.3 Distance Estimation Experiment

Some simple initial distance estimation experiments were done to verify the above algorithm was

feasible. A connected camera, specifically an Anker PowerConf C200 Webcam that collects data

at 1920(H)x1080(V)@60fps, was used to test the distance and angle estimation of various

objects that were calibrated beforehand. The main experiment was moving a chair, with a

bottle/cup on top of it, at different distances throughout the room to verify it was able to get the

distance correct for both images based on the object’s BB size.

3.5 Object Tracking

The object tracking and data association implementation for this project utilizes the Python

library Stone Soup, which contains several state estimation and tracking algorithms [43]. Stone

Soup is typically designed for offline analysis using pre-recorded data. However, its algorithms

were modified for real-time analysis as part of this project.

3.5.1 Picking an Object Tracking Method

Stone Soup provides several object-tracking algorithms, including JPDA, PDA, and GMPHD, all

with their strengths. To select the most suitable, experiments were conducted to evaluate the real-

time processing and tracking performance. The metrics used for comparison included processing

time and accuracy, as the memory requirements with the track trimming discussed in the next

section make their impact minimal.

The tracking performance was evaluated using two main experiments comparing Stone Soup’s

implementation of PDA, JPDA, and GMPHD—the first test simulated 1,000 frames with ten

actual tracks per frame. The tracks were spread within 100-meter spacing, using a cluster rate of

3.0 and a 70% probability of true detections from a sensor. Metrics such as processing time and

accuracy were analyzed using the CLEAR MOT metrics. The second test focused on more

straightforward conditions with only one detection per frame, examining how efficiently the

detections handle noise and a low number of objects. Once again, the single track was spread

28

within 100-meter spacing, using a cluster rate of 3.0 and a 70% probability of true detections

from a sensor. Each test was done 5 times to reduce any inconsistencies. These tests highlighted

trade-offs between the algorithms, which will be discussed in the results section.

3.5.2 Modifying Stone Soup for Real-Time

For most examples, Stone Soup is typically used for offline evaluation, where all data is

preloaded and processed in a single loop. Several main modifications were required to make it

work for real-time tracking: handling detections on the fly in near real-time, reducing memory

usage, and improving responsiveness.

In this project, each synchronization period from the detection queue is treated as a "time frame,"

and the detections from that period are sent to Stone Soup incrementally for association with new

or existing tracks. This approach removes the need to preload the dataset in advance and

instantly lets us dynamically associate incoming detection.

To manage memory efficiently, tracks that haven’t been updated within a predefined number of

synchronization periods are pruned from the system. These tracks are considered inactive and no

longer contribute to the tracking process, so removing them reduces memory usage and speeds

up processing. Additionally, every few synchronization periods, the system checks to see which

tracks have been updated recently. Tracks that are still active are reported to the console, giving

the user real-time feedback on the system's performance and the number of objects being

tracked. Any tracks with more than 50 data points also have their state trimmed to keep memory

requirements low during this period. With both modifications, Stone Soup can handle incoming

real-time data, perform tracking and keep memory requirements small.

29

4 Results

4.1 Real-Time Processing

The system can achieve near real-time processing by pulling data from a queue for each

synchronization window. The performance of this software is highly dependent on the underlying

hardware, particularly the CPU and GPU used to run the ML models. Initial testing was

conducted on an Nvidia Jetson Orin 16GB over a 1-minute interval, with the results summarized

in Figure 13. The radar data showed an average collection interval of approximately 0.1 seconds,

with further processing bringing the total time to around 0.15 seconds before it was added to the

queue. Video processing, was slightly faster, averaging 0.113 seconds per frame. A

synchronization window of 0.17 seconds will be used for all future processing based on these

results, ensuring at least one detection from both radar and video processing during each interval.

This will ensure that the tracks have approximately five detection points per second from the

sensors. This setup highlights the system’s ability to operate within real-time constraints while

maintaining synchronized sensor inputs.

Table 4: Average processing time to get detections from the video and radar on the Orin Board, including processing.

Processing Type Average Time (s)

Video Processing (with YOLOv8) 0.113

Radar Processing (with IMST FMCW Radar) 0.154

Since the object tracking algorithm records real-time raw sensor data for offline playback,

including radar data and image frames from the video, it’s important to consider how much

storage is required on the machine running it. If this process is intended to run for extended

periods on embedded hardware. The total amount of data collected and saved during a 1-minute

trial is summarized in Table 5. The overall data size per minute is most sensitive to the size of the

images collected in each sample. The smaller the images, the less storage is used; compression

could also be used to reduce storage size.

30

Table 5: Approximate data creation for a 1-minute trial, broken down into the video, radar and object tracking
portions. This is an approximation when saving 1280x720-sized images from the camera at each interval.

Processing Type Data Size

Video Processing (Raw + Processed Images) ~155 MB

Radar Processing ~12 MB

Object Tracking ~0.1 MB

Total ~167.1 MB

4.2 Radar Processing

4.2.1 Hovering UAV Detections

For the initial analysis of this software, pre-recorded radar data was used as input to the radar

processing pipeline, which has been discussed thus far. The pre-recorded data was used as an

input source instead of capturing data directly from the real radar. The radar data for hovering

UAVs was captured at various distances as previously described; all figures in this section will

correspond to the trial when the UAV was hovered 29 meters above the radar.

The first step of the radar processing pipeline is to calculate CA-CFAR on the incoming signal

and look for peaks in the signal corresponding to potential object detections. A sample of the

CA-CFAR on the Rx1 and Rx1 signals for one single time frame can be seen in Figure 15. This

graph shows the true detection at 29m and some noise detections at ~1m and ~85m.

Figure 15: A plot of the signal versus power for the Rx1 and Rx2 signals with lines showing their CA-CFAR
threshold is required to be considered a peak. The plot shows a true detection at 29m and noise that resulted in
detections at ~1m and ~85m.

31

Looking at a single frame from the signal analysis, there were more detections from noise than

from the specific objects. To improve the results, the algorithm looks for higher power regions in

the signal frequency over time. Plots of the signal frequency and the power of it over the entire

trial can be seen in Figure 16. A similar plot, but only using a window of 6 samples, so ~1 second

can be seen in Figure 17.

Figure 16: Frequency versus time plot, with the power levels shown. The plot shows higher power at 29m,
indicating motion over the entire 1.3-minute trial.

Figure 17: Frequency versus time plot for six samples, with the power levels shown. The plot shows higher power at
29m, indicating there was motion at that distance over the six samples.

By combining the original detections from the CA-CFAR processing of the FD signal with the

identified high-power regions from the STFT output, we can effectively reduce false detections

before sending them to track. Figure 18 shows the improvement in detection performance, the

reduction in false detections, and overall detection performance improvement on a cartesian plot.

32

Figure 18: Plot of the radar detections for a single time interval without checking for movement, i.e. just using the
CA-CFAR on the FD signal (left), and a plot of detections after only including detections that also had movement
identified with STFT.

4.3 Object Tracking

4.3.1 Initial Algorithm Testing

As described in the methodology, it was important to test different tracking options in Stone

Soup to evaluate their performance and their balance between speed and accuracy. The

performance of the algorithms was analyzed in terms of their average time to associate

detections, Multiple Object Tracking Precision (MOTP), and Multiple Object Tracking Accuracy

(MOTA).

The first set of results, shown in Table 6, compares the performance of PDA, JPDA, and

GMPHD algorithms over 1,000-time intervals with one true object to tracking and a clutter rate

of 3.0. In this scenario, JPDA was the most accurate, achieving the highest MOTA and the best

MOTP while requiring less processing time than GMPHD. GMPHD also performed well, but on

the single object detection had the slowest processing speed.

33

Table 6: Performance testing results of PDA, JPDA and GMPHD over 1000-time intervals when there is one “true”
object to track for each interval with a clutter rate of 3.0.

Algorithm Average Time to Associate Detections(s) MOTP (m) MOTA (%)

PDA 8.5 3.5 94.1

JPDA 10 2.9 96.8

GMPHD 10.2 3.2 95.3

In a more complex trial with ten true tracks and a clutter rate of 3.0, as summarized in Table 7,

the results highlight the trade-offs between the algorithms. JPDA remained the most accurate in

this scenario with a MOTA of 92.3% and a MOTP of 3.1 meters. However, its processing time

increased significantly due to the higher number of tracks and the need to evaluate probabilities

across all detections. PDA struggled in this high-clutter, multi-object environment, though it

maintained the fastest processing time at 21.10 seconds. GMPHD found a good middle ground,

with a good accuracy of 91.8% and a processing time of 25.93 seconds between the 2.

Table 7: Performance testing results of PDA, JPDA and GMPHD over 1000-time intervals when there are ten “true”
objects to track for each interval with a clutter rate of 3.0.

Algorithm Average Time to Associate Detections(s) MOTP (m) MOTA (%)

PDA 21.10 4.2 84.2

JPDA 31.13 3.1 92.3

GMPHD 25.93 3.3 91.8

Overall JPDA provided the highest accuracy in both single- and multi-object scenarios but at the

cost of significantly higher processing times, particularly in complex environments. PDA

performed the fastest but struggled with clusters. GMPHD performed well overall, balancing

accuracy and processing time, making it a good fit for near real-time tracking requirements.

Based on the results, GMPHD was selected for the remaining object-tracking experiments done

as part of this project.

4.3.2 Results for Hovering UAV Tracking

The experimental results for the UAV hovering above the radar, as defined in Section 3.3.3, were

processed through the radar pipeline and tracked using the GMPHD algorithm in Stone Stoup.

34

Figure 19 shows a single time frame of the detections, showing the UAV detections found

through CA-CFAR and the STFT processing. The figure also shows the uncertainty of the

detection made with the GMPHD algorithm, which appears to be about 1.5 meters. That

uncertainty did improve further into the processing as the track was established for longer. After

processing the entire dataset, tracking results were evaluated using CLEAR MOT metrics, with

ground truth provided by the UAV’s GPS controller, which recorded the UAV hovering at 29

meters throughout the experiment. A detection was considered accurate if it was within two

range bins, ~0.4 meters, of the ground truth.

Figure 19: Sample track shown from the Stone Soup UI, showing the individual detections, the track points and
track uncertainty for a specific time.

The metrics are summarized in Table 8, showing the tracking accuracy for the different trials

where the UAV was hovering at different vertical distances. At shorter distances, the radar

processing struggled to consistently identify detections for the UAV, so the tracking algorithm

only achieved a MOTA of 60%. At 15 meters, the MOTA was also lower at 66.7% due to

consistent false detections and a track being established from those detections for approximately

one-third of the trial. Overall, for mid to long ranges, such as 5 meters and 20 meters, the system

performed well, with MOTA values of 100% and 99%, respectively. At the maximum range of

29 meters, the MOTA was 65.4%, but this can be partially attributed to the choice of using only

two range bins for “true” detections. If the true detection threshold was with three range bins,

~0.6m, the MOTA would have been 94% for 29m.

35

Table 8: CLEAR MOT metrics, for the gathered data for a UAV hovering above the radar. As well as the maximum
deviation from the true object distance. The metrics consider a true positive to be within ~0.4m of the known
distance to the object. This is approximately two range bins.

Distance (m) MOTP (m) MOTA (%) Maximum Deviation (m)

1.3 0.07 60 -0.1

5 0.133 100 0.2

15 0.05 66.7 0.1

20 0.148 99 0.3

29 0.522 65.4 0.7

The results also highlight that the MOTP for most of the trials is good, where the distance of the

tracks is, on average, always within 5% of the recorded GPS distance value. The maximum

deviation throughout the trials also shows any associated tracks are at most 8% off their true

value. Overall, the results are somewhat promising but also point to areas for improvement.

Additional processing in the radar processing and association phase, including adjustments to

thresholds, could significantly improve tracking performance, particularly at close and long

distances.

4.4 Video Processing

The results for video processing are preliminary and should be seen as an initial proof of

concept. At the time of writing this, the official testing of a camera tracking UAVs or a camera on

a UAV tracking other objects has not been completed. However, some sample testing was

conducted to demonstrate the video processing algorithm’s capabilities. Using calibrated

bounding bound coefficients, CBB, for a chair and cup, as shown in Figure 20, it was possible to

estimate the object's positions and angles at various distances.

36

Figure 20: Picture of a video frame with the YOLOv8 bounding boxes, annotated with the calculated distance after
calibrating the coefficient for the chair and cup. The measured distance for both was approximately 1.85 m.

The results of the tests are summarized in Table 9, showing the algorithm was able to

successfully classify and provide distance estimates that closely matched the measured values.

For example, at 1.85 meters, the reported distances were nearly identical, with classification

confidence scores of 88% for the chair and 74% for the cup. Similarly, at longer distances like 5

and 10 meters, the algorithm continued to provide accurate distance estimates, with small

deviations of a few centimetres from the measured values.

Table 9: Measured distances versus the reported distances of a static chair and cup after calibrating the distance
coefficients for the camera.

Measured Distance
(m)

Chair Reported
Distance (m)

Chair Classification
Confidence (%)

Cup Reported
Distance (m)

Cup Classification
Confidence (%)

1.85 1.85 88 1.82 74

3 2.97 85 2.95 73

5 5.01 89 4.96 74

10 9.94 78 9.85 65

The confidence scores for both objects decreased slightly as the distance increased, which is

expected due to the limitations of monocular distance estimation at greater ranges. In general, the

cup’s classification appears to struggle a bit, but this is likely due to the test object being

37

described as a “shaker bottle” rather than a real cup. Overall, the results are promising. However,

it’s important to note the simplicity of this experiment. These results demonstrate the potential of

the video processing component as a foundational step, but all detections were performed on

static objects. More advanced estimation algorithms will likely be required for this in dynamic

environments, with moving objects.

38

5 Discussion

5.1 Real-Time Processing

From the initial results, the software demonstrates it can meet the near real-time processing

constraints, while successfully recording and processing data within a ~0.2 second

synchronization window. Both the radar and video processing pipelines are efficient enough to

handle the incoming data while maintaining a steady flow of detections for tracking. One

challenge noted from the current algorithm is the storage requirement for embedded hardware.

This is caused primarily due to the size of the raw and processed images from the video

processing pipeline. With two images being saved approximately every 0.113 seconds, this

quickly adds up, especially for extended runs on embedded hardware.

To address this, there are opportunities to optimize storage without losing critical data. One

approach could be compressing the saved images to reduce their size. Another more efficient

method would involve saving only the images while storing the bounding box information as

separate text files. This approach would drastically reduce the storage footprint—bounding box

data for one minute would be approximately 0.5 MB, compared to the 75 MB currently used for

half the video data. These adjustments would make the system more practical for long-term use,

especially on resource-constrained devices that may be attached to a UAV.

As more complex algorithms are added to this architecture, it will be important to continuously

monitor their processing and adjust that synchronization window as needed if the processing

takes longer.

5.2 Radar Processing

The radar processing pipeline demonstrates good performance in detecting hovering UAVs at

various distances, but there are many areas for improvement. In a single-frame’s signal analysis,

more detections often come from noise than the actual target, which remains a challenge in many

scenarios. While increasing the CFAR parameters could reduce false detections, it sometimes

results in losing the original target, making it a trade-off between sensitivity and noise filtering.

The approach of combining CA-CFAR detections with the STFT-based movement analysis has

shown improved results for static UAV detections. This approach performs well for detecting

39

objects at 1.3, 5, 15, 20 and 29 meters as shown in the results section for radar and object

tracking. However, the approach does require the objects to remain stationary within the one-

second window used for STFT calculations. A key limitation of this method is its reliance on

minimal movement within the detection window. If the UAV moves significantly during this

period, the algorithm struggles to identify the high-power regions needed for accurate detections.

Expanding the algorithm to pull out signals from adjacent regions could improve performance

for slightly dynamic objects.

Future improvements could involve training a classifier to validate UAV detections based on

combined features such as power level, range, and frequency signature. Adding true micro-

Doppler analysis would also be critical, allowing the system to differentiate between UAVs and

other moving objects, such as birds, similar to the results in [75]. This classification would make

the system more robust in real-world scenarios where noise and non-target objects are common.

This classification would make the system more robust in real-world scenarios where noise and

non-target objects are common.

More data collection and experimentation with moving objects are necessary to identify and

address weaknesses in the current approach. This will help refine the algorithm further, ensuring

it performs reliably in both static and dynamic scenarios.

5.3 Object Tracking

The results from the initial UAV tracking results show the system performs okay for association

and well for distance accuracy. For example, at 29 meters, the radar processing consistently

provides distance estimates within 0.5 meters of the ground truth, translating to less than 2%

distance error. This level of accuracy is good, but there’s still room for improvement with further

refinement of the parameters and processing pipeline to improve. One example is the issue of not

consistently detecting objects at 1.3m, this is likely a signal processing issue. The CA-CFAR

detection does not always identify the tracks that are causing the errors. This highlights the

requirement for all processing to be tuned correctly and accurately. More complex algorithms, in

general, would be helpful to accurately identify objects. One potential avenue for improvement is

adopting a machine learning-based approach for association [76] [77], which could use the data

to optimize track associations based on patterns in the environment.

40

In general object tracking will greatly benefit from the integration of video data as an additional

source for the Stone Soup algorithm. Incorporating detections from the video camera could help

improve the robustness of the tracking, especially in cases where radar data alone struggles with

noise or sparse detections. This multi-sensor approach could reduce reliance on a single modality

and improve the system's ability to handle varying environments.

The current results provide a strong foundation, but additional work on multi-modal integration,

parameter tuning, and association algorithms will be key to scaling the system for more dynamic

scenarios. There are plans to test and try these association methods on data with moving UAVs,

but at the time of writing this, the GPS data was not available, so capturing MOT metrics wasn’t

possible.

5.4 Video Processing

The video processing results are still in the early stages, with limited experimentation completed

so far. The initial tests show that using calibrated coefficients for estimating object distance is

feasible, but the method is highly sensitive to the positioning of the targets. Since the approach

relies on the relative size of the bounding box, even small changes in object orientation or

placement could significantly influence the results. The objects in this experiment were not

rotated, which would have increased distance estimation for irregular shapes.

While the current implementation is simple and serves as a proof of concept, it highlights the

need for more advanced distance estimation algorithms when using a monocular camera.

Methods that go beyond YOLO-based detection and bounding box size, such as the deep

learning approach described by Patel et. al [33] could provide more robust and accurate results.

Keeping this initial pipeline simple did help validate that the processing pipeline could run

detection on the embedded Nvidia Jetson board with this simple algorithm. It lays some of the

groundwork for more sophisticated ML-based distance algorithms in future iterations.

41

6 Future Work

There are several areas of improvement and expansion for this project, particularly in integrating

video and radar data. While the current implementation demonstrates promising results, we were

unable to test the radar and video feeds simultaneously since synchronized data collection hasn’t

occurred yet but should soon. Future work will focus on combining these modalities to explore

how the radar and video detections can complement each other for better tracking and

localization accuracy.

For the radar, a major next step is to move beyond the current STFT-based movement detection

and incorporate full micro-Doppler analysis. This would allow the system to identify specific

UAV signatures and differentiate them from other objects, like birds. Alternatively, moving to a

machine learning-based approach for signal analysis could improve the radar’s ability to

distinguish between different object types while still handling noise and clutter effectively. Fine-

tuning the CFAR parameters with real UAV data is another priority, as this could significantly

improve detection accuracy and reduce false positives in various scenarios. When using airborne

radar, the presence of motion artifacts and the absence of typical stationary clutter will introduce

additional challenges. Addressing these issues will be critical for ensuring the system can reliably

process and track moving objects.

For the video processing, advancing beyond the current YOLO-based setup is a natural

progression. Incorporating pose estimation or fusing radar and camera data could enhance the

system’s ability to localize objects with greater accuracy. Additionally, using a more complex

CNN or ML-based approach for distance estimation from the monocular camera would be

valuable for detecting moving objects and handling more complex scenes. YOLO itself offers

built-in tracking algorithms that assign track IDs across frames, which could be explored further

to bridge the gap between radar and video tracking and potentially improve object association.

With more collected data, additional adjustments to the Stone Soup parameters will also be

necessary. There are many settings related to noise handling, association probabilities, and clutter

rates that can be optimized as we gather more varied and dynamic datasets. Once the tracking

and estimation systems are better tuned and performing reliably, the next step would be to

integrate a collision avoidance system, leveraging the tracking results to create actionable

42

outputs for real-world UAV operations. A modified software design diagram can be seen in

Figure 21 showcasing where a collision avoidance algorithm could fit.

Figure 21: Updated software application diagram with the tracking algorithm sending data to a collision avoidance
algorithm to help calculate actions to prevent a collision.

43

7 Conclusion

This paper has presented a modular architecture for a UAV object tracking algorithm, designed to

be easily deployed on various systems, including embedded hardware, using a Docker container.

The results demonstrate that the current implementation can run efficiently on an Nvidia Jetson

Orin, collecting and processing data in under 0.2-second intervals. The radar processing pipeline

and tracking algorithms effectively detect and track hovering objects within the radar’s field of

view, operating well within the 0.18-second synchronization window. Additionally, the initial

video tracking algorithm, when calibrated, shows promise for estimating object distances

accurately.

While the individual components have been tested and shown to be effective as a foundational

system, there is clear room for improvement. The modular nature of the architecture ensures that

future enhancements, such as advanced algorithms or additional processing steps, can be

integrated seamlessly. This flexibility makes the system not only a robust starting point for UAV

tracking but also a platform that can evolve over time to adopt leading methods and further

optimize performance based on collected data.

44

8 References

[1] C. Zhang and J. Kovacs, “The application of small unmanned aerial systems for precision
agriculture: A review,” ResearchGate, Oct. 2024, doi: 10.1007/s11119-012-9274-5.

[2] M. Silvagni, A. Tonoli, E. Zenerino, and M. Chiaberge, “Multipurpose UAV for search and
rescue operations in mountain avalanche events,” Geomat. Nat. Hazards Risk, vol. 8, no. 1,
pp. 18–33, Jan. 2017, doi: 10.1080/19475705.2016.1238852.

[3] S. Manfreda, M. McCabe, and P. Miller, “On the Use of Unmanned Aerial Systems for
Environmental Monitoring,” ResearchGate. Accessed: Nov. 17, 2024. [Online]. Available:
https://www.researchgate.net/publication/323755402_On_the_Use_of_Unmanned_Aerial_
Systems_for_Environmental_Monitoring

[4] S. Ojha and S. Sakhare, “Image processing techniques for object tracking in video
surveillance- A survey,” in 2015 International Conference on Pervasive Computing (ICPC),
Jan. 2015, pp. 1–6. doi: 10.1109/PERVASIVE.2015.7087180.

[5] L. Liu, D. Wang, Z. Peng, C. L. P. Chen, and T. Li, “Bounded Neural Network Control for
Target Tracking of Underactuated Autonomous Surface Vehicles in the Presence of
Uncertain Target Dynamics,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 4, pp.
1241–1249, Apr. 2019, doi: 10.1109/TNNLS.2018.2868978.

[6] A. N. Wilson, A. Kumar, A. Jha, and L. R. Cenkeramaddi, “Embedded Sensors,
Communication Technologies, Computing Platforms and Machine Learning for UAVs: A
Review,” IEEE Sens. J., vol. 22, no. 3, pp. 1807–1826, Feb. 2022, doi:
10.1109/JSEN.2021.3139124.

[7] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-
Time Object Detection,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Jun. 2016, pp. 779–788. doi: 10.1109/CVPR.2016.91.

[8] Y. Dalbah, J. Lahoud, and H. Cholakkal, “RadarFormer: Lightweight and Accurate Real-
Time Radar Object Detection Model,” Apr. 17, 2023, arXiv: arXiv:2304.08447. doi:
10.48550/arXiv.2304.08447.

[9] J. Moon, S. Papaioannou, C. Laoudias, P. Kolios, and S. Kim, “Deep Reinforcement
Learning Multi-UAV Trajectory Control for Target Tracking,” IEEE Internet Things J., vol.
8, no. 20, pp. 15441–15455, Oct. 2021, doi: 10.1109/JIOT.2021.3073973.

[10] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,” ACM Comput Surv, vol. 38,
no. 4, pp. 13-es, Dec. 2006, doi: 10.1145/1177352.1177355.

[11] L.-Y. Lo, C. H. Yiu, Y. Tang, A.-S. Yang, B. Li, and C.-Y. Wen, “Dynamic Object Tracking
on Autonomous UAV System for Surveillance Applications,” Sensors, vol. 21, no. 23, Art.
no. 23, Jan. 2021, doi: 10.3390/s21237888.

[12] C. Sampedro, A. Rodriguez-Ramos, H. Bavle, A. Carrio, P. de la Puente, and P. Campoy, “A
Fully-Autonomous Aerial Robot for Search and Rescue Applications in Indoor
Environments using Learning-Based Techniques,” J. Intell. Robot. Syst., vol. 95, no. 2, pp.
601–627, Aug. 2019, doi: 10.1007/s10846-018-0898-1.

[13] D. E. Barrick, “FM/CW radar signals and digital processing”, Accessed: Dec. 07, 2024.
[Online]. Available: https://repository.library.noaa.gov/view/noaa/18645

[14] A. G. Stove, “Linear FMCW radar techniques,” IEE Proc. F Radar Signal Process., vol.
139, no. 5, pp. 343–350, Oct. 1992, doi: 10.1049/ip-f-2.1992.0048.

[15] F. Foster, H. Rohling and U. Lubbert, “An automotive radar network based on 77 GHz
FMCW sensors,” in ResearchGate, doi: 10.1109/RADAR.2005.1435950.

45

[16] Y.-S. Son, H.-K. Sung, and S. W. Heo, “Automotive Frequency Modulated Continuous
Wave Radar Interference Reduction Using Per-Vehicle Chirp Sequences,” Sensors, vol. 18,
no. 9, Art. no. 9, Sep. 2018, doi: 10.3390/s18092831.

[17] J. Michalczyk, C. Schöffmann, A. Fornasier, J. Steinbrener and S. Weiss, “Radar-Inertial
State-Estimation for UAV Motion in Highly Agile Manoeuvres.” Accessed: Dec. 07, 2024.
[Online]. Available: https://ieeexplore.ieee.org/document/9836130

[18] E. Hyun, W. Oh, and J.-H. Lee, “Multi-target detection algorithm for FMCW radar,” in
2012 IEEE Radar Conference, May 2012, pp. 0338–0341. doi:
10.1109/RADAR.2012.6212161.

[19] Sentire Radar by IMST, “DK-sR-1200e | SENTIRE RADAR.” Accessed: Dec. 08, 2024.
[Online]. Available: https://radar-sensor.com/products/developer-kits/dk-sr-1200e.html

[20] J. Yang, J. Thompson, X. Huang, T. Jin, and Z. Zhou, “FMCW radar near field three-
dimensional imaging,” in 2012 IEEE International Conference on Communications (ICC),
Jun. 2012, pp. 6353–6356. doi: 10.1109/ICC.2012.6364681.

[21] C. Ben and T. Islam, “Field study of a 24 GHz FMCW radar system suitable to detect
small-sized RPAS under 5 kg MTOW,” 2015. Accessed: Dec. 07, 2024. [Online]. Available:
https://www.semanticscholar.org/paper/Field-study-of-a-24-GHz-FMCW-radar-system-
suitable-Ben-Islam/22cde2a9890c0968d60f29a328dae244396d9551

[22] M. Hägelen, R. Jetten, R. Kulke, C. Ben, and M. Krüger, “Monopulse Radar for Obstacle
Detection and Autonomous Flight for Sea Rescue UAVs,” in 2018 19th International Radar
Symposium (IRS), Jun. 2018, pp. 1–7. doi: 10.23919/IRS.2018.8448240.

[23] J. Perdoch, S. Gažovová and M. Pacek, “(PDF) An improved radar clutter suppression by
simple neural network,” ResearchGate, Oct. 2024, doi: 10.1049/rsn2.12510.

[24] D. B. Herr and D. Tahmoush, “Data-Driven STFT for UAV Micro-Doppler Signature
Analysis,” in 2020 IEEE International Radar Conference (RADAR), Apr. 2020, pp. 1023–
1028. doi: 10.1109/RADAR42522.2020.9114726.

[25] R. A. Zitar, M. Al-Betar, M. Ryalat and S. Kassaymeh, “(PDF) A review of UAV Visual
Detection and Tracking Methods,” in ResearchGate, Nov. 2024. Accessed: Dec. 07, 2024.
[Online]. Available:
https://www.researchgate.net/publication/371314484_A_review_of_UAV_Visual_Detection
_and_Tracking_Methods

[26] M. Liu, X. Wang, A. Zhou, X. Fu, Y. Ma, and C. Piao, “UAV-YOLO: Small Object
Detection on Unmanned Aerial Vehicle Perspective,” Sensors, vol. 20, no. 8, Art. no. 8, Jan.
2020, doi: 10.3390/s20082238.

[27] V. Mehta, H. Azad, F. Dadboud, M. Bolic, and I. Mantegh, “Real-Time UAV and Payload
Detection and Classification System Using Radar and Camera Sensor Fusion,” in 2023
IEEE/AIAA 42nd Digital Avionics Systems Conference (DASC), Oct. 2023, pp. 1–6. doi:
10.1109/DASC58513.2023.10311246.

[28] A. Coluccia et al., “Drone-vs-Bird Detection Challenge at IEEE AVSS2021,” in 2021 17th
IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS),
Nov. 2021, pp. 1–8. doi: 10.1109/AVSS52988.2021.9663844.

[29] J. Li, D. H. Ye, M. Kolsch, J. P. Wachs, and C. A. Bouman, “Fast and Robust UAV to UAV
Detection and Tracking From Video,” IEEE Trans. Emerg. Top. Comput., vol. 10, no. 3, pp.
1519–1531, Jul. 2022, doi: 10.1109/TETC.2021.3104555.

[30] W. Liu et al., “SSD: Single Shot MultiBox Detector,” Dec. 29, 2016, arXiv:
arXiv:1512.02325. doi: 10.48550/arXiv.1512.02325.

46

[31] M. Tan, R. Pang, and Q. V. Le, “EfficientDet: Scalable and Efficient Object Detection,” Jul.
27, 2020, arXiv: arXiv:1911.09070. doi: 10.48550/arXiv.1911.09070.

[32] Ultralytics, “Home.” Accessed: Nov. 23, 2024. [Online]. Available:
https://docs.ultralytics.com/

[33] V. Patel, V. Mehta, M. Bolic, and I. Mantegh, “A Hybrid Framework for Object Distance
Estimation using a Monocular Camera,” in 2023 IEEE/AIAA 42nd Digital Avionics Systems
Conference (DASC), Oct. 2023, pp. 1–7. doi: 10.1109/DASC58513.2023.10311189.

[34] M. Vajgl, P. Hurtik, and T. Nejezchleba, “Dist-YOLO: Fast Object Detection with Distance
Estimation,” Appl. Sci., vol. 12, no. 3, Art. no. 3, Jan. 2022, doi: 10.3390/app12031354.

[35] N. M. Krishna, R. Y. Reddy, M. S. C. Reddy, K. P. Madhav, and G. Sudham, “Object
Detection and Tracking Using Yolo,” in 2021 Third International Conference on Inventive
Research in Computing Applications (ICIRCA), Sep. 2021, pp. 1–7. doi:
10.1109/ICIRCA51532.2021.9544598.

[36] L. Tan, X. Dong, Y. Ma, and C. Yu, “A Multiple Object Tracking Algorithm Based on
YOLO Detection,” in 2018 11th International Congress on Image and Signal Processing,
BioMedical Engineering and Informatics (CISP-BMEI), Oct. 2018, pp. 1–5. doi:
10.1109/CISP-BMEI.2018.8633009.

[37] B.-N. Vo and W.-K. Ma, “The Gaussian Mixture Probability Hypothesis Density Filter,”
IEEE Trans. Signal Process., vol. 54, no. 11, pp. 4091–4104, Nov. 2006, doi:
10.1109/TSP.2006.881190.

[38] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,” J. Basic
Eng., vol. 82, no. 1, pp. 35–45, Mar. 1960, doi: 10.1115/1.3662552.

[39] Defence Science and Technology Laboratory, UK, “1 - An introduction to Stone Soup:
using the Kalman filter — Stone Soup 1.5.dev121+g0b20e96 documentation.” Accessed:
Dec. 07, 2024. [Online]. Available:
https://stonesoup.readthedocs.io/en/latest/auto_tutorials/01_KalmanFilterTutorial.html

[40] S. Yang and M. Baum, “Extended Kalman filter for extended object tracking,” in 2017
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Mar.
2017, pp. 4386–4390. doi: 10.1109/ICASSP.2017.7952985.

[41] T. E. Fortmann, Y. Bar-Shalom, and M. Scheffe, “Multi-target tracking using joint
probabilistic data association,” in 1980 19th IEEE Conference on Decision and Control
including the Symposium on Adaptive Processes, Dec. 1980, pp. 807–812. doi:
10.1109/CDC.1980.271915.

[42] Y. Bar-Shalom and E. Tse, “Tracking in a cluttered environment with probabilistic data
association,” Automatica, vol. 11, no. 5, pp. 451–460, Sep. 1975, doi: 10.1016/0005-
1098(75)90021-7.

[43] S. Hiscocks et al., Stone Soup: No Longer Just an Appetiser. (2023). Python. doi:
10.23919/FUSION52260.2023.10224185.

[44] K. Bernardin and R. Stiefelhagen, “Evaluating Multiple Object Tracking Performance: The
CLEAR MOT Metrics,” EURASIP J. Image Video Process., vol. 2008, no. 1, Art. no. 1,
Dec. 2008, doi: 10.1155/2008/246309.

[45] P. Votruba, R. Nisley, R. Rothrock and B. Zombro, “Single Integrated Air Picture (SIAP)
Metrics Implementation.” Accessed: Dec. 07, 2024. [Online]. Available:
https://apps.dtic.mil/sti/citations/ADA397225

47

[46] P. C. Lusk and R. W. Beard, “Visual Multiple Target Tracking From a Descending Aerial
Platform,” in 2018 Annual American Control Conference (ACC), Jun. 2018, pp. 5088–5093.
doi: 10.23919/ACC.2018.8431915.

[47] J. Li and H. Li, “Transformer-Based Multi-object Tracking in Unmanned Aerial Vehicles,”
in Pattern Recognition and Computer Vision, Q. Liu, H. Wang, Z. Ma, W. Zheng, H. Zha,
X. Chen, L. Wang, and R. Ji, Eds., Singapore: Springer Nature, 2024, pp. 347–358. doi:
10.1007/978-981-99-8537-1_28.

[48] M. Yao, J. Wang, J. Peng, M. Chi, and C. Liu, “FOLT: Fast Multiple Object Tracking from
UAV-captured Videos Based on Optical Flow,” in Proceedings of the 31st ACM
International Conference on Multimedia, in MM ’23. New York, NY, USA: Association for
Computing Machinery, Oct. 2023, pp. 3375–3383. doi: 10.1145/3581783.3611868.

[49] F. Sivrikaya and B. Yener, “Time synchronization in sensor networks: a survey | IEEE
Journals & Magazine | IEEE Xplore.” Accessed: Dec. 07, 2024. doi:
10.1109/MNET.2004.1316761

[50] M. H. Ko, G. West, S. Venkatesh, and M. Kumar, “Online Context Recognition in
Multisensor Systems using Dynamic Time Warping | IEEE Conference Publication | IEEE
Xplore.” Accessed: Dec. 07, 2024. doi: 10.1109/ISSNIP.2005.1595593

[51] M. B. Lyons, D. A. Keith, S. R. Phinn, T. J. Mason, and J. Elith, “A comparison of
resampling methods for remote sensing classification and accuracy assessment,” Remote
Sens. Environ., vol. 208, pp. 145–153, Apr. 2018, doi: 10.1016/j.rse.2018.02.026.

[52] F. Baccelli and A. M. Makowski, “Queueing models for systems with synchronization
constraints,” Proc. IEEE, vol. 77, no. 1, pp. 138–161, Jan. 1989, doi: 10.1109/5.21076.

[53] D. Bannach, O. Amft, and P. Lukowicz, “Automatic Event-Based Synchronization of
Multimodal Data Streams from Wearable and Ambient Sensors,” in Smart Sensing and
Context, P. Barnaghi, K. Moessner, M. Presser, and S. Meissner, Eds., Berlin, Heidelberg:
Springer, 2009, pp. 135–148. doi: 10.1007/978-3-642-04471-7_11.

[54] C.-H. Hsiao, S. Narayanasamy, E. M. I. Khan, C. L. Pereira, and G. A. Pokam,
“AsyncClock: Scalable Inference of Asynchronous Event Causality,” SIGPLAN Not, vol.
52, no. 4, pp. 193–205, Apr. 2017, doi: 10.1145/3093336.3037712.

[55] B. Kragl, S. Qadeer, and T. A. Henzinger, “Synchronizing the Asynchronous,” in 29th
International Conference on Concurrency Theory (CONCUR 2018), S. Schewe and L.
Zhang, Eds., in Leibniz International Proceedings in Informatics (LIPIcs), vol. 118.
Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018, p. 21:1-
21:17. doi: 10.4230/LIPIcs.CONCUR.2018.21.

[56] C. Schranz, S. Mayr, S. Bernhart, and C. Halmich, “Nearest advocate: a novel event-based
time delay estimation algorithm for multi-sensor time-series data synchronization,”
EURASIP J. Adv. Signal Process., vol. 2024, no. 1, p. 46, Apr. 2024, doi: 10.1186/s13634-
024-01143-1.

[57] R. Scolati, I. Fronza, N. E. Ioini, A. Samir, and C. Pahl, “A Containerized Big Data
Streaming Architecture for Edge Cloud Computing on Clustered Single-Board Devices,” in
ResearchGate, doi: 10.5220/0007695000680080.

[58] B. B. Rad, H. J. Bhatti and M. Ahmadi, “(PDF) An Introduction to Docker and Analysis of
its Performance,” ResearchGate. Accessed: Dec. 07, 2024. [Online]. Available:
https://www.researchgate.net/publication/318816158_An_Introduction_to_Docker_and_An
alysis_of_its_Performance

48

[59] Docker, “ Accelerated Container Application Development.” Accessed: Dec. 07, 2024.
[Online]. Available: https://www.docker.com/

[60] NVIDIA, “NVIDIA Embedded Systems for Next-Gen Autonomous Machines,” NVIDIA.
Accessed: Dec. 07, 2024. [Online]. Available: https://www.nvidia.com/en-us/autonomous-
machines/embedded-systems/

[61] Ultralytics, “ultralytics/docker/Dockerfile-jetson-jetpack5 at main · ultralytics/ultralytics.”
Accessed: Dec. 02, 2024. [Online]. Available:
https://github.com/ultralytics/ultralytics/blob/main/docker/Dockerfile-jetson-jetpack5

[62] Github, “GitHub Actions documentation,” GitHub Docs. Accessed: Dec. 08, 2024.
[Online]. Available: https://docs.github.com/en/actions

[63] N. Bowness, “Publish Latest Docker Images.” Accessed: Dec. 08, 2024. [Online].
Available: https://github.com/nathanbowness/UAV-Object-
Tracking/blob/main/.github/workflows/docker-publish-latest.yaml

[64] Docker, “Docker Hub Container Image Library | App Containerization.” Accessed: Dec. 08,
2024. [Online]. Available: https://hub.docker.com

[65] NVIDIA, “NVIDIA Jetson AGX Orin,” NVIDIA. Accessed: Dec. 07, 2024. [Online].
Available: https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-
orin/

[66] NumPy, “numpy.hamming — NumPy v2.1 Manual.” Accessed: Dec. 08, 2024. [Online].
Available: https://numpy.org/doc/stable/reference/generated/numpy.hamming.html

[67] NumPy, “numpy.fft.fft — NumPy v2.1 Manual.” Accessed: Dec. 08, 2024. [Online].
Available: https://numpy.org/doc/stable/reference/generated/numpy.fft.fft.html

[68] Z. Cao, J. Li, C. Song, Z. Xu, and X. Wang, “Compressed Sensing-Based Multitarget CFAR
Detection Algorithm for FMCW Radar,” IEEE Trans. Geosci. Remote Sens., vol. 59, no. 11,
pp. 9160–9172, Nov. 2021, doi: 10.1109/TGRS.2021.3054961.

[69] SciPy, “Signal processing (scipy.signal) — SciPy v1.14.1 Manual.” Accessed: Dec. 08,
2024. [Online]. Available: https://docs.scipy.org/doc/scipy/reference/signal.html

[70] A. Raza, A. Dhakal, S. Honkanen, and R. Baets, “Glucose sensing using photonics
waveguide based evanescent Raman spectroscopy,” ResearchGate. Accessed: Dec. 08,
2024. [Online]. Available:
https://www.researchgate.net/publication/325158306_Glucose_sensing_using_photonics_w
aveguide_based_evanescent_Raman_spectroscopy

[71] DJI, “Buy DJI Mini 3 - DJI Store.” Accessed: Dec. 08, 2024. [Online]. Available:
https://store.dji.com/ca/product/dji-mini-3

[72] Ultralytics, “Ultralytics YOLOv8 - NVIDIA Jetson AI Lab.” Accessed: Nov. 23, 2024.
[Online]. Available: https://www.jetson-ai-lab.com/tutorial_ultralytics.html

[73] OpenCV, “Home”. Accessed: Dec. 02, 2024. [Online]. Available: https://opencv.org/
[74] Ultralytics, “Ultralytics/YOLOv8 · Hugging Face.” Accessed: Dec. 02, 2024. [Online].

Available: https://huggingface.co/Ultralytics/YOLOv8
[75] V. Mehta, F. Dadboud, M. Bolic, and I. Mantegh, “A Deep Learning Approach for Drone

Detection and Classification Using Radar and Camera Sensor Fusion,” in 2023 IEEE
Sensors Applications Symposium (SAS), Jul. 2023, pp. 01–06. doi:
10.1109/SAS58821.2023.10254123.

[76] P. Emami, P. M. Pardalos, L. Elefteriadou, and S. Ranka, “Machine Learning Methods for
Data Association in Multi-Object Tracking,” ACM Comput Surv, vol. 53, no. 4, p. 69:1-
69:34, Aug. 2020, doi: 10.1145/3394659.

49

[77] K. Yoon, D. Y. Kim, Y.-C. Yoon, and M. Jeon, “Data Association for Multi-Object Tracking
via Deep Neural Networks,” Sensors, vol. 19, no. 3, Art. no. 3, Jan. 2019, doi:
10.3390/s19030559.

