



# Single-Stage UAV Detection and Classification with YOLOV5: Mosaic Data Augmentation and PANet

COMPUTATIONAL ANALYSIS AND ACCELERATION RESEARCH GROUP (CARG), SEECS,
University of Ottawa (UOttawa)
National Research Council Canada (NRC)

## Agenda

Introduction

Related Work

Dataset

Methodology

Results and Discussion

Conclusion

## Introduction UAVs Applications and Challenges

- Civil and military applications
- Posing Different Challenges
  - Detection, tracking, classification, payload classification, controlling, etc.
- UAV detection for a safe integration
  - Presence of UAVs
  - Different sensor modalities
  - Specifically cameras



A. Mirzaeinia and M. Hassanalian, "Minimum-cost drone—nest matchingthrough the kuhn—munkres algorithm in smart cities: Energy managementand efficiency enhancement," Aerospace, vol. 6, no. 11, p. 125, 2019.

### Introduction

Drone-vs-Bird Detection Challenge in 4th International workshop on small-drone surveillance, detection and counteraction techniques (WOSDETC) of IEEE AVSS 2021

- Drone or bird? Easily confusion
- Challenges:
  - Unfavourable conditions  $\rightarrow$  complex background, occlusion, etc.
  - long range → small objects
  - reduced visibility 
     — weather/illumination



## Introduction Object Detection

- Potential objects' location and classification
- DL advancements in the field
  - Convolutional Neural Network (CNN)
- Challenges:
  - Complex backgrounds
  - Small Targets
    - feature uncertainty, low-resolution, and imperfect context information
  - Irregular trajectory



### Related Work

#### Object Detection Methods

- Two-stage and single-stage
- CNN: feature maps from raw images
- R-CNN family: R-CNN, Fast R-CNN, Faster R-CNN
  - Slow
  - Accurate
- From YOLO to YOLOV5:
  - Fast
  - Lower accuracy in some scenarios





Both images: S. S. A. Zaidi, M. S. Ansari, A. Aslam, N. Kanwal, M. Asghar, and B. Lee, "A survey of modern deep learning based object detection models," arXivpreprint arXiv:2104.11892, 2021.

## Related Work Drone Detection Methods

- Previous works:
  - Faster R-CNN + tracker
  - Modified version of YOLOV3
  - YOLOV2
  - Faster R-CNN + background subtraction
  - Faster R-CNN + Feature Pyramid Network (FPN) + Enhanced Super-Resolution GAN (ESRGAN)



T.-Y. Lin, P. Doll'ar, R. Girshick, K. He, B. Hariharan, and S. Belongie, "Feature pyramid networks for object detection," inProceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 2117–2125



## Appropriate Drone Detection Method

- Fast or accurate?
- Single-stage or two-stage?
- Preprocessing and post-processing?
- Time and resources limitations
- Testing both single-stage and two-stage
- YOLOV5 and Faster R-CNN + FPN
- Dataset combination for increasing the knowledge of network



### Dataset

#### We combined Det-Fly with the competition dataset

- Number of samples (more than 13K)
- Different lighting situations & backgrounds
   & Small targets
- After combination:
  - 116,608 (12,367 background frames)
  - training, validation, and testing
  - 80%, 10%, and 10%



### Methodology YOLOV5

- FPN can help small objects detection
- Path Aggregation Network (PANet) is like FPN
- Augmentation:
  - Scaling
  - Color space adjustments
  - Mosaic augmentation
- Pretrained YOLOV5x





5. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, "Path aggregation network for in-stance segmentation," inProceedings of the IEEE Conference on ComputerVision and Pattern Recognition (CVPR), Jun. 2018

### Methodology YOLOV5x



## Results YOLOV5 Training

- 32 epochs in 24 hours
- Mist cluster of ComputeCanada
- 4 Tesla V100-SXM2 32 GB
- Input image: 1280x1280
- Batch size: 32
- $0.98mAP_{0.5}$ ,  $0.71mAP_{0.5:0.95}$





## Discussion YOLOV5 Positive Results

- Small distant objects (sometimes)
- Ignoring some other objects such as insects
- Detecting multiple drones
- Ignoring the drone shadow
- Barely, detecting some objects in complex backgrounds



## Discussion YOLOV5 Negative Results

- Flying in front of some unseen backgrounds
- Occlusion
- Insects, flocks of birds as drones
- Missing the detection of distant drones in complex backgrounds



## Discussion Faster R-CNN + FPN Drawbacks

- Missing the simple detections
- Too much false negatives
- Repetitive detection for a drone
- False positives: insect



### Conclusion

- For addressing the drone vs. bird detection: YOLOV5
- Det-Fly: air-to-air publicly available dataset
- Increase the number of small objects and complex backgrounds
- Not only YOLOV5 works better in simple scenarios, but also it beats the Faster R-CNN+FPN model in challenging scenes
- Open problems: small objects detection in complex backgrounds
- Future works: tracking algorithms, test other ideas and methods (we have time and computational resources limitation)





### Thanks!

You can reach me at this email: fardad.dadboud@uottawa.ca