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Introduction
UAVs Applications and Challenges

• Civil and military applications

• Posing Different Challenges

• Detection, tracking, classification,
payload classification, controlling, etc.

• UAV detection for a safe integration

• Presence of UAVs

• Different sensor modalities

• Specifically cameras A.  Mirzaeinia  and  M.  Hassanalian,  “Minimum-cost  drone–nest  matchingthrough the kuhn–munkres algorithm in smart cities: Energy managementand efficiency 
enhancement,”Aerospace, vol. 6, no. 11, p. 125, 2019.
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Introduction
Drone-vs-Bird Detection Challenge in 4th International workshop on small-drone surveillance, detection and counteraction techniques (WOSDETC) of 

IEEE AVSS 2021

• Drone or bird? Easily confusion

• Challenges:

• Unfavourable conditions → complex background, occlusion, etc.

• long range → small objects

• reduced visibility → weather/illumination

https://science.howstuffworks.com/transport/flight/modern/dutch-police-are-training-eagles-capture-drones-right-out-the-sky.htm4



Introduction
Object Detection

• Potential objects’ location and classification

• DL advancements in the field

• Convolutional Neural Network (CNN)

• Challenges:

• Complex backgrounds

• Small Targets

• feature uncertainty, low-resolution, and imperfect context information

• Irregular trajectory
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Related Work
Object Detection Methods

• Two-stage and single-stage

• CNN: feature maps from raw images

• R-CNN family: R-CNN, Fast R-CNN, Faster R-CNN

• Slow

• Accurate

• From YOLO to YOLOV5:

• Fast

• Lower accuracy in some scenarios

Both images: S. S. A. Zaidi, M. S. Ansari, A. Aslam, N. Kanwal, M. Asghar, and B. Lee,“A survey of modern deep learning based object detection models,”arXivpreprint 
arXiv:2104.11892, 2021.
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Related Work
Drone Detection Methods

• Previous works:

• Faster R-CNN + tracker

• Modified version of YOLOV3

• YOLOV2

• Faster R-CNN + background subtraction

• Faster R-CNN + Feature Pyramid Network (FPN) +
Enhanced Super-Resolution GAN (ESRGAN)

X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, C. C. Loy, Y. Qiao, and X.Tang,Esrgan: Enhanced super-
resolution generative adversarial networks,2018. arXiv:1809.00219 [cs.CV].

T.-Y. Lin, P. Doll ár, R. Girshick, K. He, B. Hariharan, and S. Belongie,“Feature  pyramid  networks  for  
object  detection,”  inProceedings of theIEEE conference on computer vision and pattern 
recognition, 2017, pp. 2117–2125
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Appropriate Drone Detection Method

• Fast or accurate?

• Single-stage or two-stage?

• Preprocessing and post-processing?

• Time and resources limitations

• Testing both single-stage and two-stage

• YOLOV5 and Faster R-CNN + FPN

• Dataset combination for increasing the knowledge of network
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Dataset
We combined Det-Fly with the competition dataset

• Number of samples (more than 13K)

• Different lighting situations & backgrounds
& Small targets

• After combination:

• 116,608 (12,367 background frames)

• training, validation, and testing

• 80%, 10%, and 10%
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Methodology
YOLOV5

• FPN can help small objects detection

• Path Aggregation Network (PANet) is like FPN

• Augmentation: 

• Scaling

• Color space adjustments

• Mosaic augmentation

• Pretrained YOLOV5x

S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path aggregation network for in-stance segmentation,” inProceedings of the IEEE 
Conference on ComputerVision and Pattern Recognition (CVPR), Jun. 2018
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Methodology
YOLOV5x
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Results
YOLOV5 Training

• 32 epochs in 24 hours

• Mist cluster of ComputeCanada

• 4 Tesla V100-SXM2 32 GB

• Input image: 1280x1280

• Batch size: 32

0.98𝑚𝐴𝑃0.5, 0.71𝑚𝐴𝑃0.5:0.95
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Discussion
YOLOV5 Positive Results

• Small distant objects (sometimes)

• Ignoring some other objects such as insects

• Detecting multiple drones

• Ignoring the drone shadow

• Barely, detecting some
objects in complex backgrounds
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Discussion
YOLOV5 Negative Results

• Flying in front of some unseen backgrounds

• Occlusion

• Insects, flocks of birds as drones

• Missing the detection of distant drones
in complex backgrounds
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Discussion
Faster R-CNN + FPN Drawbacks

• Missing the simple detections

• Too much false negatives

• Repetitive detection for a drone

• False positives: insect
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Conclusion

• For addressing the drone vs. bird detection: YOLOV5

• Det-Fly: air-to-air publicly available dataset

• Increase the number of small objects and complex backgrounds

• Not only YOLOV5 works better in simple scenarios, but also it beats the Faster R-
CNN+FPN model in challenging scenes

• Open problems: small objects detection in complex backgrounds

• Future works: tracking algorithms, test other ideas and methods (we have time and 
computational resources limitation)
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Thanks!

You can reach me at this email:
fardad.dadboud@uottawa.ca
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